10.曲線y=1+$\sqrt{4-{x^2}}$與直線kx-y-2k+5=0有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是$(\frac{3}{4},1]$.

分析 將曲線方程化簡(jiǎn),可得曲線表示以C(0,1)為圓心、半徑r=2的圓的上半圓.再將直線方程化為點(diǎn)斜式,可得直線經(jīng)過定點(diǎn)A(2,5)且斜率為k.作出示意圖,設(shè)直線與半圓的切線為AD,半圓的左端點(diǎn)為B(-2,1),當(dāng)直線的斜率k大于AD的斜率且小于或等于AB的斜率時(shí),直線與半圓有兩個(gè)相異的交點(diǎn).由此利用直線的斜率公式與點(diǎn)到直線的距離公式加以計(jì)算,可得實(shí)數(shù)k的取值范圍.

解答 解:化簡(jiǎn)曲線y=1+$\sqrt{4-{x^2}}$,得x2+(y-1)2=4(y≥1)
∴曲線表示以C(0,1)為圓心,半徑r=2的圓的上半圓.
∵直線kx-y-2k+5=0可化為y-5=k(x-2),
∴直線經(jīng)過定點(diǎn)A(2,5)且斜率為k.
又∵半圓y=1+$\sqrt{4-{x^2}}$與直線kx-y-2k+5=0有兩個(gè)相異的交點(diǎn),
∴設(shè)直線與半圓的切線為AD,半圓的左端點(diǎn)為B(-2,1),
當(dāng)直線的斜率k大于AD的斜率且小于或等于AB的斜率時(shí),
直線與半圓有兩個(gè)相異的交點(diǎn).
由點(diǎn)到直線的距離公式,當(dāng)直線與半圓相切時(shí)滿足$\frac{|-1-2k+5|}{\sqrt{{k}^{2}+1}}$=2,
解之得k=$\frac{3}{4}$,即kAD=$\frac{3}{4}$.
又∵直線AB的斜率kAB=1,∴直線的斜率k的范圍為k∈$(\frac{3}{4},1]$.
故答案為$(\frac{3}{4},1]$.

點(diǎn)評(píng) 本題給出直線與半圓有兩個(gè)不同的交點(diǎn),求直線的斜率k的取值范圍.著重考查了直線的方程、圓的方程、點(diǎn)到直線的距離公式和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$\frac{sinα+cosα}{sinα-2cosα}$=2.
(1)求tanα;
(2)求cos($\frac{π}{2}$-α)•cos(-π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)f(x)是定義在R上的偶函數(shù),對(duì)x∈R,都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是(  )
A.(2,3)B.$(\root{3}{3},2)$C.$(\root{3}{4},2)$D.$(\root{3}{2},3)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知四面體ABCD中,E,F(xiàn)分別是AC,BD的中點(diǎn),若AB=6,CD=8,EF=5,則AB與CD所成角的度數(shù)為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知CD是圓x2+y2=25的動(dòng)弦,且|CD|=8,則CD的中點(diǎn)M的軌跡方程是( 。
A.x2+y2=1B.x2+y2=16C.x2+y2=9D.x2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,PD⊥底面ABCD,點(diǎn)M、N分別是棱AB、CD的中點(diǎn).
(1)證明:BN⊥平面PCD;
(2)在線段PC上是否存在點(diǎn)H,使得MH與平面PCD所成最大角的正切值為$\frac{{\sqrt{6}}}{2}$,若存在,請(qǐng)求出H點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=xlnx的單調(diào)遞減區(qū)間為( 。
A.$(0,\frac{1}{e})$B.$(-∞,\frac{1}{e})$C.(-∞,-e)D.$(\frac{1}{e},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知非零向量$\overrightarrow{a}$,$\overrightarrow$,滿足|$\overrightarrow$|=4|$\overrightarrow{a}$|,且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角是( 。
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差d大于0,且a2,a5是方程x2-12x+27=0的兩根,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=$\frac{3}{2}$(bn-1),(n∈N+).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案