5.如圖,正方形ABCD的邊長為1,E是CD邊外的一點(diǎn),滿足:CE∥BD,BE=BD,則CE=$\frac{\sqrt{6}-\sqrt{2}}{2}$.

分析 由正方形ABCD,得到三角形DCB為等腰直角三角形,且兩直角邊為1,根據(jù)勾股定理求出BD的長,又BE=BD,從而得到BE的長,設(shè)CF=x,故BF=BC-CF=1-x,在直角三角形BCF中,由BC=1,CF=x,根據(jù)勾股定理表示出BF,再由BE-BF表示出EF,由EC與BD平行,根據(jù)兩直線平行內(nèi)錯(cuò)角相等,得出兩對內(nèi)錯(cuò)角相等,利用兩對角對應(yīng)相等的兩三角形相似可得三角形BDF與三角形ECF相似,根據(jù)相似得比例,把各邊的長代入列出關(guān)于x的方程,求出方程的解得到x的值,進(jìn)而求出相似比,可得出CE的長.

解答 解:$BE=BD=\sqrt{2}$,設(shè)CF=x,則$BF=\sqrt{1+{x^2}}$,DF=1-x,
EF=$\sqrt{2}$-$\sqrt{1{+x}^{2}}$,由△BDF~△ECF,得$\frac{EF}{BF}=\frac{CF}{DF}=\frac{EC}{BD}$,
即有$\frac{{\sqrt{2}-\sqrt{1+{x^2}}}}{{\sqrt{1+{x^2}}}}=\frac{x}{1-x}$,所以$\frac{{\sqrt{2}-\sqrt{1+{x^2}}}}{{\sqrt{2}}}=\frac{x}{1}$,$\frac{{\sqrt{1+{x^2}}}}{{\sqrt{2}}}=\frac{1-x}{1}$,則$x=2-\sqrt{3}$,
再由$\frac{EC}{BD}=\frac{CF}{DF}$,即$\frac{EC}{{\sqrt{2}}}=\frac{x}{1-x}=\frac{{2-\sqrt{3}}}{{\sqrt{3}-1}}=\frac{{\sqrt{3}-1}}{2}$,所以$EC=\frac{{\sqrt{6}-\sqrt{2}}}{2}$,
故答案為:$\frac{\sqrt{6}-\sqrt{2}}{2}$

點(diǎn)評 此題考查了相似三角形的判定與性質(zhì),正方形的性質(zhì),以及勾股定理的應(yīng)用,相似三角形是中考的必考內(nèi)容,證明三角形的相似可以得到其對應(yīng)邊成比例,利用比例式建立已知邊與未知邊的聯(lián)系,借助方程的思想來解決問題,利用線段的加減及勾股定理表示出相似三角形的對應(yīng)邊是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a、b∈(0,+∞),則“ab<ba”是“a>b>e”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若方程$\frac{1}{2}$kx-lnx=0有兩個(gè)實(shí)數(shù)根,則k取值范圍是(0,$\frac{2}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.證明不等式:$\sqrt{6}+\sqrt{7}>2\sqrt{2}+\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a,b,c的平均數(shù)為M,a與b的平均數(shù)為N,N與c的平均數(shù)為P,若a>b>c,則M與P的大小關(guān)系是(  )
A.M=PB.M>PC.M<PD.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,將OA=6,AB=4的矩形OABC放置在平面直角坐標(biāo)系中,動點(diǎn)M,N以每秒1個(gè)單位的速度分別從點(diǎn)A,C同時(shí)出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動,點(diǎn)N沿CB向終點(diǎn)B運(yùn)動,當(dāng)兩個(gè)動點(diǎn)運(yùn)動了t秒時(shí),過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.
(1)點(diǎn)B的坐標(biāo)為(6,4);用含t的式子表示點(diǎn)P的坐標(biāo)為($t,\frac{2}{3}t$);
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0<t<6);并求t為何值時(shí),S有最大值?
(3)試探究:當(dāng)S有最大值時(shí),在y軸上是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的$\frac{1}{3}$?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知方程x2+bx+c=0有兩個(gè)不等的實(shí)根x1,x2,設(shè)C={x1,x2},A={1,3,5,7,9},B={1,4,7,10},若A∩C=∅,C∩B=C,試求b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=sin(2x-$\frac{3π}{4}$)
(1)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.
(2)求函數(shù)f(x)=sin(2x-$\frac{3π}{4}$)的周期、對稱軸、對稱中心,單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}中,a1=1,a2=a,且an+1=k(an+an+2)對任意正整數(shù)都成立,數(shù)列{an}的前n項(xiàng)和為Sn
(1)若k=$\frac{1}{2}$且S2017=2017a,求a
(2)是否存在實(shí)數(shù)k,使數(shù)列{an}是公比不為1的等比數(shù)列,且對任意相鄰三項(xiàng)am,am+1,am+2按某順序排列后成等差數(shù)列?若存在,求出所有的k值;若不存在,請說明理由;
(3)若k=-$\frac{1}{2}$,求Sn

查看答案和解析>>

同步練習(xí)冊答案