2.在銳角△ABC中,A,B,C角所對的邊分別為a,b,c,且$\frac{acosB+bcosA}{c}$=$\frac{2\sqrt{3}}{3}$sinC.
(1)求∠C;
(2)若$\frac{a}{sinA}$=2,求△ABC面積S的最大值.

分析 (1)由正弦定理可得sinAcosB+sinBcosA=$\frac{2\sqrt{3}}{3}$sin2C,即可求∠C;
(2)若$\frac{a}{sinA}$=2,可得c=$\sqrt{3}$.由余弦定理得3=b2+a2-ab≥ab(a=b時取等號),即可求△ABC面積S的最大值.

解答 解:(1)由正弦定理可得sinAcosB+sinBcosA=$\frac{2\sqrt{3}}{3}$sin2C,
∴sin(A+B)=$\frac{2\sqrt{3}}{3}$sin2C,
∴sinC=$\frac{2\sqrt{3}}{3}$sin2C,
∵sinC>0,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵C為銳角,
∴C=60°;
(2)由$\frac{c}{sinC}$=$\frac{a}{sinA}$=2,可得c=$\sqrt{3}$.
由余弦定理得3=b2+a2-ab≥ab(a=b時取等號),
∴S=$\frac{1}{2}absinC$≤$\frac{1}{2}•3•\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$,
∴△ABC面積S的最大值為$\frac{3\sqrt{3}}{4}$.

點評 本題考查正弦、余弦定理的運用,三角形的面積公式的運用,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知數(shù)列{an},an=(2n+m)+(-1)n(3n-2)(m∈N*,m與n無關),若$\sum_{i=1}^{2m}$a2i-1≤k2-2k-1對一切m∈N*恒成立,則實數(shù)k的取值范圍為(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知半徑為r的球O與正方體ABCD-A1B1C1D1的各面都相切,記球O與正方體ABCD-A1B1C1D1的各面的交線的總長度為f(r),則f(1)=6π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.過拋物線y2=6x的焦點F的直線l交拋物線于A,B兩點,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,則線段AB的中點M到y(tǒng)軸的距離為( 。
A.5B.4C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點A作斜率為-1的直線l,該直線與雙曲線的兩條漸近線的交點分別為B,C.若$2\overrightarrow{AB}=\overrightarrow{BC}$,則雙曲線的離心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知定義在R上的偶函數(shù)f(x),其導函數(shù)為f′(x);當x≥0時,恒有$\frac{x}{2}$f′(x)+f(-x)≤0,若g(x)=x2f(x),則不等式g(x)<g(1-2x)的解集為( 。
A.($\frac{1}{3}$,1)B.(-∞,$\frac{1}{3}$)∪(1,+∞)C.($\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.某中學的十佳校園歌手有6名男同學,4名女同學,其中3名來自1班,其余7名來自其他互不相同的7個班,現(xiàn)從10名同學中隨機選擇3名參加文藝晚會,則選出的3名同學來自不同班級的概率為$\frac{49}{60}$,設X為選出3名同學中女同學的人數(shù),則該變量X的數(shù)學期望為$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.從4雙不同鞋子中任取4只,則其中恰好有一雙的不同取法有48種,記取出的4只鞋子中成雙的鞋子對數(shù)為X,則隨機變量X的數(shù)學期望E(X)=$\frac{6}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足b=acosC+$\frac{\sqrt{3}}{3}$csinA.
(Ⅰ)求角A的大;
(Ⅱ)若△ABC且的面積為$\sqrt{3}$,且AB邊上的中線長為$\sqrt{2}$,求邊長b,c.

查看答案和解析>>

同步練習冊答案