4.已知數(shù)列{an},an=(2n+m)+(-1)n(3n-2)(m∈N*,m與n無關(guān)),若$\sum_{i=1}^{2m}$a2i-1≤k2-2k-1對一切m∈N*恒成立,則實數(shù)k的取值范圍為(-∞,-1]∪[3,+∞).

分析 求出$\sum_{i=1}^{2m}$a2i-1關(guān)于m的函數(shù)式,求出其最大值,再解不等式即可得出k的范圍.

解答 解:a2i-1=2(2i-1)+m+(-1)2i-1[3(2i-1)-2]=4i-2+m-(6i-5)=-2i+m+3,
$\sum_{i=1}^{2m}$a2i-1=$\sum_{i=1}^{2m}$(-2i+m+3)=-2$\sum_{i=1}^{2m}$i+2m(m+3)=$\frac{2m+1}{2}×2m×(-2)$+2m2+6m=-2m2+4m,
∴-2m2+4m≤k2-2k-1恒成立,
∵-2m2+4m=-2(m-1)2+2≤2,
∴k2-2k-1≥2恒成立,即k2-2k-3≥0,
解得k≥3或k≤-1.
故答案為(-∞,-1]∪[3,+∞).

點評 本題考查了數(shù)列求和,函數(shù)恒成立問題,不等式的解法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{x}^{2}}{2e}$-ax.
(1)若a=$\frac{1}{2}$,求曲線y=f(x)在(e,f(e))處的切線方程;
(2)若關(guān)于x的不等式f(x)≥ax+b≥lnx-ax在(0,+∞)上恒成立,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a,b∈R,i為虛數(shù)單位,若a+3i與2+bi在復(fù)平面內(nèi)對應(yīng)的點關(guān)于原點對稱,則$\frac{a+bi}{1+i}$等于( 。
A.-$\frac{5+i}{2}$B.$\frac{-5+i}{2}$C.$\frac{1+5i}{2}$D.$\frac{1-5i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點分別為F1,F(xiàn)2,過F1任作一條與兩坐標(biāo)軸都不垂直的直線,與C交于A,B兩點,且△ABF2的周長為8.當(dāng)直線AB的斜率為$\frac{3}{4}$時,AF2與x軸垂直.
(I)求橢圓C的方程;
(Ⅱ)在x軸上是否存在定點M,總能使MF1平分∠AMB?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知ω>0,設(shè)x1,x2是方程sin(ωx+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$的兩個不同的實數(shù)根,且|x2-x1|的最小值為2,則ω等于( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}的前n項和為Sn,且a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉N*}\\{{a}_{n},\frac{n}{3}∈N*}\end{array}\right.$,則S3n=9n2+3n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.i是虛數(shù)單位,復(fù)數(shù)z=$\frac{3i}{1+i}$的虛部是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F(c,0),過點F且斜率為-$\frac{a}$的直線與雙曲線的漸近線交于點A,若△OAF的面積為4ab(O為坐標(biāo)原點),則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在銳角△ABC中,A,B,C角所對的邊分別為a,b,c,且$\frac{acosB+bcosA}{c}$=$\frac{2\sqrt{3}}{3}$sinC.
(1)求∠C;
(2)若$\frac{a}{sinA}$=2,求△ABC面積S的最大值.

查看答案和解析>>

同步練習(xí)冊答案