精英家教網 > 高中數學 > 題目詳情

直線l過拋物線C:x2=4y的焦點且與y軸垂直,則l與C所圍成的圖形的面積等于(    )

A.      B.2      C.      D.

 

【答案】

C

【解析】

試題分析:該拋物線的焦點坐標是,則直線的方程為,與拋物線聯(lián)立,,得兩個交點坐標為,那么l與C所圍成的圖形面積等于,故選C.

考點:1.直線與拋物線的聯(lián)立;2.定積分求面積.

 

練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年河北省石家莊市高三下學期第二次質量檢測文科數學試卷(解析版) 題型:解答題

(本小題滿分12分)

已知直線l1:4x:-3y+6=0和直線l2:x=-,.若拋物線C:y2=2px上的點到直線l1和直線l2的距離之和的最小值為2.

(I )求拋物線C的方程;

(II)直線l過拋物線C的焦點F與拋物線交于A,B兩點,且AA1,BB1都垂直于直線l2,垂足為A1,B1,直線l2與y軸的交點為Q,求證:為定值。

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省德州市樂陵一中高三(上)期末數學復習訓練試卷6(解析版) 題型:解答題

已知拋物線C:y2=4x,直線l:y=x+b與C交于A、B兩點,O為坐標原點.
(1)當直線l過拋物線C的焦點F時,求|AB|;
(2)是否存在直線l使得直線OA、OB傾斜角之和為135°,若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:《圓錐曲線與方程》2013年高三數學一輪復習單元訓練(北京郵電大學附中)(解析版) 題型:解答題

設拋物線C:x2=2py(p>0)的焦點為F,A(x,y)(x≠0)是拋物線C上的一定點.
(1)已知直線l過拋物線C的焦點F,且與C的對稱軸垂直,l與C交于Q,R兩點,S為C的準線上一點,若△QRS的面積為4,求p的值;
(2)過點A作傾斜角互補的兩條直線AM,AN,與拋物線C的交點分別為M(x1,y1),N(x2,y2).若直線AM,AN的斜率都存在,證明:直線MN的斜率等于拋物線C在點A關于對稱軸的對稱點A1處的切線的斜率.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省廣州市海珠區(qū)高三(上)數學綜合測試1(文科)(解析版) 題型:解答題

設拋物線C:x2=2py(p>0)的焦點為F,A(x,y)(x≠0)是拋物線C上的一定點.
(1)已知直線l過拋物線C的焦點F,且與C的對稱軸垂直,l與C交于Q,R兩點,S為C的準線上一點,若△QRS的面積為4,求p的值;
(2)過點A作傾斜角互補的兩條直線AM,AN,與拋物線C的交點分別為M(x1,y1),N(x2,y2).若直線AM,AN的斜率都存在,證明:直線MN的斜率等于拋物線C在點A關于對稱軸的對稱點A1處的切線的斜率.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省廣州市海珠區(qū)高三(上)數學綜合測試1(理科)(解析版) 題型:解答題

設拋物線C:x2=2py(p>0)的焦點為F,A(x,y)(x≠0)是拋物線C上的一定點.
(1)已知直線l過拋物線C的焦點F,且與C的對稱軸垂直,l與C交于Q,R兩點,S為C的準線上一點,若△QRS的面積為4,求p的值;
(2)過點A作傾斜角互補的兩條直線AM,AN,與拋物線C的交點分別為M(x1,y1),N(x2,y2).若直線AM,AN的斜率都存在,證明:直線MN的斜率等于拋物線C在點A關于對稱軸的對稱點A1處的切線的斜率.

查看答案和解析>>

同步練習冊答案