分析 (Ⅰ)利用誘導(dǎo)公式以及三角函數(shù)的定義,求解即可.
(Ⅱ)利用向量共線,列出關(guān)系式,求出正切函數(shù)值,化簡所求表達式求解即可.
解答 解:(Ⅰ)∵$tanα=\frac{y}{x}=-\frac{3}{4}$,
∴$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}=\frac{-sinαsinα}{-sinαcosα}=tanα$=-$\frac{3}{4}$ …(6分)
(Ⅱ)∵$\overrightarrow a∥\overrightarrow b$,∴3cosα-sinα=0,∴tanα=3.
$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{4tanα-2}{5+3tanα}$.把tanα=3代入上式得:
$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{4tanα-2}{5+3tanα}$=$\frac{4×3-2}{5+3×3}$=$\frac{5}{7}$.…(12分)
點評 本題考查向量的共線,三角函數(shù)的化簡求值,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3\sqrt{2}}}{8}$ | B. | $\frac{{3\sqrt{2}}}{4}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | ±$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{9}$ | B. | ±$\frac{5}{9}$ | C. | $\frac{\sqrt{5}}{3}$ | D. | ±$\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com