15.總體(x,y)的一組樣本數(shù)據(jù)為:
x1234
y3354
(1)若x,y線性相關(guān),求回歸直線方程;
(2)當x=6時,估計y的值.
附:回歸直線方程$\hat y$=$\hat b$x+$\hat a$,其中$\hat a$=$\overline{y}$-$\hat b$$\overline{x}$,$\hat b$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{{\sum_{y=1}^{n}x}_{i}^{2}-n{\overline{x}}^{2}}$.

分析 (1)根據(jù)所給的數(shù)據(jù)作出橫標和縱標的平均數(shù),得到這組數(shù)據(jù)的樣本中心點,利用最小二乘法作出線性回歸方程的系數(shù),進而寫出線性回歸方程.
(2)當x=6時,代入回歸方程,即可估計y的值.

解答 解:(1)∵$\overline{x}=\frac{5}{2},\overline{y}=\frac{15}{4}$ …2分 $\sum_{i=1}^4{{x_i}{y_i}}=40,\sum_{i=1}^4{x_i^2}=30$;
∴$\hat b=\frac{{40-4×\frac{5}{2}×\frac{15}{4}}}{{30-4×\frac{25}{4}}}=\frac{1}{2}$ …6分
$\hat a=\bar y-\hat b\overline{x}=\frac{15}{4}-\frac{1}{2}×\frac{5}{2}=\frac{5}{2}$,…8分
∴回歸直線方程為$\hat y=\frac{1}{2}x+\frac{5}{2}$.…10分
(2)當x=6 時,$\hat y=\frac{11}{2}$.…12分

點評 本題考查回歸方程的求法,利用最小二乘法求回歸方程的系數(shù)是解答此類問題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=a(x-1)2+lnx+1.
(I)若函數(shù)f(x)在區(qū)間[2,4]上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當x∈[1,+∞)時,函數(shù)y=f(x)圖象上的點都在$\left\{\begin{array}{l}{x≥1}\\{y-x≤0}\end{array}\right.$所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,菱形ABCD的棱長為2,∠BAD=60°,CP⊥底面ABCD,E為邊AD的中點.
(1)求證:平面PBE⊥平面BCP;
(2)當直線AP與底面ABCD所成的角為30°時,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如表提供了甲產(chǎn)品的產(chǎn)量x(噸)與利潤y(萬元)的幾組對照數(shù)據(jù).
x3456
y2.5344.5
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)計算相關(guān)指數(shù)R2的值,并判斷線性模型擬合的效果.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=ln(x+1)+e-x的單調(diào)遞增區(qū)間為( 。
A.(-1,+∞)B.(0,+∞)C.(e,+∞)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某奶茶店為了解白天平均氣溫與某種飲料銷量之間的關(guān)系進行分析研究,記錄了2月21日至2月25日
的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯),得到如表數(shù)據(jù):
平均氣溫x(℃)91112108
銷量y(杯)2326302521
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅱ) 試根據(jù)(1)求出的線性回歸方程,預(yù)測平均氣溫約為20℃時該奶茶店的這種飲料銷量.
(參考:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$•$\overline{x}$;9×23+11×26+12×30+10×25+8×21=1271,92+112+122+102+82=510)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.調(diào)查某公司的五名推銷員,某工作年限與年推銷金額如表:
推銷員ABCDE
工作年限x(萬元)23578
年推銷金額y(萬元)33.546.58
(Ⅰ)畫出年推銷金額y關(guān)于工作年限x的散點圖,并從散點圖中發(fā)現(xiàn)工作年限與年推銷金額之間關(guān)系的一般規(guī)律;
(Ⅱ)利用最小二乘法求年推銷金額y關(guān)于工作年限x的回歸直線方程;
(Ⅲ)利用(Ⅱ)中的回歸方程,預(yù)測工作年限是10年的推銷員的年推銷金額.
附:$\widehat$=$\frac{\sum_{i-1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i-1}^{n}{(x}_{i}-\overline{x})}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,短軸長為2.
(1)求橢圓的標準方程;
(2)直線l:y=kx+m(k≠0)與y軸的交點為A(點A不在橢圓外),且與橢圓交于兩個不同的點P,Q,PQ的中垂線恰好經(jīng)過橢圓的下端點B,且與線段PQ交于點C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小正周期是$\frac{2π}{3}$,最小值是-2,且圖象經(jīng)過點($\frac{5π}{9}$,0),則f(0)=$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案