已知圓過橢圓的兩焦點(diǎn),與橢圓有且僅有兩個(gè)與圓相切 ,與橢圓相交于兩點(diǎn)記
(1)求橢圓的方程
(2)求的取值范圍;
(3)求的面積S的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),與=(3,-1)共線.
(1)求橢圓的離心率;
(2)設(shè)M為橢圓上任意一點(diǎn),且(),證明為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)、分別是圓和橢圓的弦,且弦的端點(diǎn)在軸的異側(cè),端點(diǎn)與、與的橫坐標(biāo)分別相等,縱坐標(biāo)分別同號.
(Ⅰ)若弦所在直線斜率為,且弦的中點(diǎn)的橫坐標(biāo)為,求直線的方程;
(Ⅱ)若弦過定點(diǎn),試探究弦是否也必過某個(gè)定點(diǎn). 若有,請證明;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
橢圓:的左、右頂點(diǎn)分別、,橢圓過點(diǎn)且離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于、兩點(diǎn)的任意一點(diǎn)作軸,為垂足,延長到點(diǎn),且,過點(diǎn)作直線軸,連結(jié)并延長交直線于點(diǎn),線段的中點(diǎn)記為點(diǎn).
①求點(diǎn)所在曲線的方程;
②試判斷直線與以為直徑的圓的位置關(guān)系, 并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知橢圓的離心率,A,B
分別為橢圓的長軸和短軸的端點(diǎn),為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點(diǎn),求△POQ面積最大時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓,離心率為的橢圓經(jīng)過點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的一個(gè)焦點(diǎn)且互相垂直的直線分別與橢圓交于和,是否存在常數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線的方程為.
(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線交于點(diǎn),以為直徑的圓記為.
①若恰好是橢圓的上頂點(diǎn),求截直線所得的弦長;
②設(shè)與直線交于點(diǎn),試證明:直線與軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)河上有一拋物線型拱橋,當(dāng)水面距拱頂5時(shí),水面寬為8,一小船寬4,高2,載貨后船露出水面上的部分高,問水面上漲到與拋物線拱頂相距多少米時(shí),小船恰好能通行。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
點(diǎn)A、B分別是以雙曲線的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓C長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓C上,且位于x軸上方,
(1)求橢圓C的的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)設(shè)M是橢圓長軸AB上的一點(diǎn),點(diǎn)M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到M的距離d的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com