18.若偶函數(shù)y=f(x)對任意實數(shù)x都有f(x+2)=-f(x),且在〔-2,0〕上為單調(diào)遞減函數(shù),則( 。
A.$f(\frac{11}{2})>f(\frac{11}{3})>f(\frac{11}{4})$B.$f(\frac{11}{4})>f(\frac{11}{2})>f(\frac{11}{3})$C.$f(\frac{11}{2})>f(\frac{11}{4})>f(\frac{11}{3})$D.$f(\frac{11}{3})>f(\frac{11}{4})>f(\frac{11}{2})$

分析 先根據(jù)f(x+2)=-f(x),判斷函數(shù)為以4的周期函數(shù),再通過周期性轉(zhuǎn)化,進而根據(jù)函數(shù)在[-2,0]上單調(diào)遞減進而得到答案.

解答 解:f(x+4)=f(x+2+2)=-f(x+2)=f(x),
∴f(x)是以4為周期的函數(shù).
∴f($\frac{11}{4}$)=f(4-$\frac{5}{4}$)=f(-$\frac{5}{4}$),
f($\frac{11}{2}$)=f(4+$\frac{3}{2}$)=f($\frac{3}{2}$)=f(-$\frac{3}{2}$),
f($\frac{11}{3}$)=f(4-$\frac{1}{3}$)=f(-$\frac{1}{3}$),
在[-2,0]上單調(diào)遞減,
∴f(-$\frac{3}{2}$)>f(-$\frac{5}{4}$)>f(-$\frac{1}{3}$),
∴f($\frac{11}{2}$)>f($\frac{11}{4}$)>f($\frac{11}{3}$),
故選:C.

點評 本題主要考查了奇偶性與單調(diào)性的綜合,解題的關(guān)鍵是將把f($\frac{11}{2}$)、f($\frac{11}{4}$)、f($\frac{11}{3}$)分別轉(zhuǎn)化到[-2,0]上的函數(shù)值,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[0,3]上單調(diào)遞增,在區(qū)間[3,+∞)上單調(diào)遞減,且滿足f(-4)=f(1)=0,則不等式f(x)<0的解集是( 。
A.(-4,-1)∪(1,4)B.(-∞,-4)∪(-1,1)∪(4,+∞)C.(-∞,-4)∪(-1,0)∪(1,4)D.(-4,-1)∪(0,1)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知數(shù)列{an}滿足a1=8,an+1-an=n(n∈N*),則$\frac{a_n}{n}$取最小值時n=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若函數(shù)f(x)的定義域為[2,5],則函數(shù)f(|x+3|)的定義域為[-8,-5]∪[-1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.以橢圓的右焦點F2為圓心作一個圓,使此圓過橢圓的中心,交橢圓于點M、N,若直線MF1(F1為橢圓左焦點)是圓F2的切線,則橢圓的離心率為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$-1D.2-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)是定義在實數(shù)集R上的奇函數(shù),且在區(qū)間(-∞,0]上是單調(diào)遞增,若f(1)+f(lgx-2)<0,則x的取值范圍為(0,10).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知f(x)的定義域為(0,+∞),且在其上為增函數(shù),滿足f(xy)=f(x)+f(y),f(2)=1,不等式f(x)+f(x-2)<3的解集是{x|2<x<4}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{3}$(an-1).
(1)證明:數(shù)列{an}是等比數(shù)列;  
(2)求an及Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知θ∈[0,2π],而sinθ、cosθ是方程x2-kx+k+1=0的兩實數(shù)根,求k和θ的值.

查看答案和解析>>

同步練習冊答案