【題目】(本小題滿分12分)如圖,曲線由上半橢圓和部分拋物線 連接而成, 的公共點為,其中的離心率為.
(Ⅰ)求的值;
(Ⅱ)過點的直線與分別交于(均異于點),若,求直線的方程.
【答案】(Ⅰ) ; (Ⅱ).
【解析】試題分析:(1)由上半橢圓和部分拋物公共點為,得,設的半焦距為,由及,解得;
(2)由(1)知,上半橢圓的方程為, ,易知,直線與軸不重合也不垂直,故可設其方程為,并代入的方程中,整理得: ,
由韋達定理得,又,得,從而求得,繼而得點的坐標為,同理,由得點的坐標為,最后由,解得,經(jīng)檢驗符合題意,故直線的方程為.
試題解析:(1)在方程中,令,得
在方程中,令,得
所以
設的半焦距為,由及,解得
所以,
(2)由(1)知,上半橢圓的方程為,
易知,直線與軸不重合也不垂直,設其方程為
代入的方程中,整理得:
(*)
設點的坐標
由韋達定理得
又,得,從而求得
所以點的坐標為
同理,由得點的坐標為
,
,即
, ,解得
經(jīng)檢驗, 符合題意,
故直線的方程為
科目:高中數(shù)學 來源: 題型:
【題目】共享單車給市民出行帶來了諸多便利,某公司購買了一批單車投放到某地給市民使用,
據(jù)市場分析,每輛單車的營運累計利潤y(單位:元)與營運天數(shù)x滿足函數(shù)關系
式.
(1)要使營運累計利潤高于800元,求營運天數(shù)的取值范圍;
(2)每輛單車營運多少天時,才能使每天的平均營運利潤的值最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后拋擲兩枚大小相同的骰子.
(1)求點數(shù)之和出現(xiàn)7點的概率;
(2)求出現(xiàn)兩個6點的概率;
(3)求點數(shù)之和能被3整除的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求實數(shù)a的取值范圍;
(2)若a=0,求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)若函數(shù)g(x)=f(x)﹣x有兩個極值點x1 , x2 , 求證: + >2ae.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的圖象與函數(shù)y=x3﹣3x2+2的圖象關于點( ,0)對稱,過點(1,t)僅能作曲線y=f(x)的一條切線,則實數(shù)t的取值范圍是( )
A.(﹣3,﹣2)
B.[﹣3,﹣2]
C.(﹣∞,﹣3)∪(﹣2,+∞)
D.(﹣∞,﹣3)∪[﹣2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線過坐標原點,圓的方程為.
(1)當直線的斜率為時,求與圓相交所得的弦長;
(2)設直線與圓交于兩點,且為的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)在R上的導函數(shù)為f'(x),對于任意的實數(shù)x,都有f'(x)+2017<4034x,若f(t+1)<f(﹣t)+4034t+2017,則實數(shù)t的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若直線l過點(-2,0)且被圓C截得的弦長為2,求直線l的方程;
(2)從圓C外一點P向圓C引一條切線,切點為M,O為坐標原點,且|PM|=|PO|,求|PM|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com