設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列命題:
①若m?β,α⊥β,則m⊥α;      
②若m∥α,m⊥β,則α⊥β;
③若α⊥β,α⊥γ,則β⊥γ;       
④若α∩γ=m,β∩γ=n,m∥n,則α∥β;
⑤若α∥β,P∈α,PQ∥β,則PQ?α.
上面命題中,真命題的序號(hào)是
 
(寫(xiě)出所有真命題的序號(hào)).
考點(diǎn):空間中直線與平面之間的位置關(guān)系,空間中直線與直線之間的位置關(guān)系
專題:綜合題,空間位置關(guān)系與距離
分析:要判斷線線、線面、面面的位置關(guān)系,根據(jù)線面平行(垂直)、面面平行(垂直)的判定和性質(zhì),即可得出結(jié)論.
解答: 解:①若“α⊥β,m?β,且m垂直于α、β的交線”,則“m⊥α”成立,條件中缺少了“m垂直于α、β的交線”,故結(jié)論“m⊥α”不一定成立,得①是假命題;
②若m∥α,m⊥β,則α⊥β,因?yàn)閙∥α根據(jù)線面平行的性質(zhì)在α內(nèi)至少存在一條直線與m平行,根據(jù)線面垂直的判定:如果兩條平行線中的一條垂直于這個(gè)平面,那么另一條也垂直于該平面,故是真命題;
③α⊥β,α⊥γ,則β、γ相交、平行,故是假命題;
④若α∩γ=m,β∩γ=n,m∥n,則α∥β或α、β相交,故是假命題;
⑤若α∥β,P∈α,PQ∥β,由面面平行的性質(zhì)定理PQ?α,故是真命題.
故答案為:②⑤.
點(diǎn)評(píng):本題給出空間位置關(guān)系的幾個(gè)命題,叫我們判斷其真假,著重考查了線面平行的定義與性質(zhì)、面面平行的判定定理和面面垂直的性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

生活富裕了,農(nóng)民也健身啦,一天,一農(nóng)民夫婦帶著小孩共3人在新農(nóng)村健身房玩?zhèn)髑蛴螒,持球者將球等可能的傳給其他2人,若球首先從父親傳出,經(jīng)過(guò)4次傳球.
(1)求球恰好回到父親手中的概率;
(2)求小孩獲球(獲得他人傳來(lái)的球)的次數(shù)為2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l、m,平面α、β且l⊥α,m?β給出下列四個(gè)命題,其中正確的是
 

①若α∥β則l⊥m
②若α⊥β則l∥m
③若l⊥m則α∥β
④若l∥m則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若命題“?x∈R,x2+2x+m≥0”的否定為真命題,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在120°的二面角內(nèi)放一個(gè)半徑為1的球,若該球與二面角的兩個(gè)面都相切,則球心到二面角的棱的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m≥2,點(diǎn)P(x,y)為
y≥x
y≤mx
x+y≤1
所表示的平面區(qū)域內(nèi)任意一點(diǎn),M(0,-5),O坐標(biāo)原點(diǎn),f(m)為
OP
OM
的最小值,則f(m)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x>0,y>0,且ln3x+ln27y=ln3,則
3
x
+
1
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)由三個(gè)正方體組成幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、9+2
2
B、11
C、9.125
D、10+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|x2-1<0},B={x|x+2≥0},則A∩B=( 。
A、A
B、B
C、{x|-2≤x<1}
D、{x|-1<x≤2}

查看答案和解析>>

同步練習(xí)冊(cè)答案