如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CD、CB上,點E與點C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求證:BD⊥平面POA;
(2)記三棱錐P-ABD的體積為V1,四棱錐P-BDEF的體積為V2,求當PB取得最小值時V1∶V2的值.
(1)見解析(2)4∶3
【解析】(1)證明:在菱形ABCD中,∵BD⊥AC,∴BD⊥AO.
∵EF⊥AC,∴PO⊥EF,
∵平面PEF⊥平面ABFED,平面PEF∩平面ABFED=EF,且PO?平面PEF,∴PO⊥平面ABFED,
∵BD?平面ABFED,∴PO⊥BD.
∵AO∩PO=O,所以BD⊥平面POA.
(2)連接OB,設AO∩BD=H.由(1)知,AC⊥BD.
∵∠DAB=60°,BC=4,∴BH=2,CH=2.
設OH=x(0<x<2).
由(1)知,PO⊥平面ABFED,∴PO⊥OB,即△POB為直角三角形.
∴PB2=OB2+PO2=(BH2+OH2)+PO2,
∴PB2=4+x2+(2-x)2=2x2-4 x+16=2(x-)2+10.
當x=時,PB取得最小值,此時O為CH的中點.
∴S△CEF= S△BCD,
∴S梯形BFED=S△BCD=S△ABD,
∴V1= S△ABD·PO,V2= S梯形BFED·PO.
∴=.
∴當PB取得最小值時,V1∶V2的值為4∶3.
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)仿真模擬卷2練習卷(解析版) 題型:選擇題
已知⊙P的半徑等于6,圓心是拋物線y2=8x的焦點,經(jīng)過點M(1,-2)的直線l將⊙P分成兩段弧,當優(yōu)弧與劣弧之差最大時,直線l的方程為( )
A.x+2y+3=0 B.x-2y-5=0
C.2x+y=0 D.2x-y-5=0
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷6練習卷(解析版) 題型:選擇題
由不等式組圍成的三角形區(qū)域內(nèi)有一個內(nèi)切圓,向該三角形區(qū)域內(nèi)隨機投一個點,該點落在圓內(nèi)的概率是關(guān)于t的函數(shù)P(t),則( )
A.P′(t)>0 B.P′(t)<0 C.P′(t)=0 D.P′(t)符號不確定
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷5練習卷(解析版) 題型:填空題
圓x2+y2-ax+2=0與直線l相切于點A(3,1),則直線l的方程為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷5練習卷(解析版) 題型:選擇題
已知雙曲線=1(a>0,b>0)的一個焦點與拋物線y2=4x的焦點重合,且雙曲線的離心率等于,則該雙曲線的方程為( )
A.x2-=1 B.x2-y2=15 C.-y2=1 D.-=1
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷4練習卷(解析版) 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,AB⊥BC,O為AC中點.
(1)證明:A1O⊥平面ABC;
(2)若E是線段A1B上一點,且滿足VE-BCC1=·VABC-A1B1C1,求A1E的長度.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷4練習卷(解析版) 題型:選擇題
如圖,正方體ABCD-A1B1C1D1中,E,F分別為棱AB,CC1的中點,在平面ADD1A1內(nèi)且與平面D1EF平行的直線( )
A.有無數(shù)條 B.有2條 C.有1條 D.不存在
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷3練習卷(解析版) 題型:填空題
在等差數(shù)列{an}中,已知a3+a8=10,則3a5+a7=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷1練習卷(解析版) 題型:填空題
已知集合A={x|x2-x≤0},函數(shù)f(x)=2-x(x∈A)的值域為B,則(∁RA)∩B=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com