(本小題滿分14分)已知函數(shù)
(I)求函數(shù)上的最小值;
(II)對一切恒成立,求實數(shù)的取值范圍;
(III)求證:對一切,都有
(I)f ′(x)=lnx+1,當(dāng)x∈(0,),f ′(x)<0,f (x)單調(diào)遞減,
當(dāng)x∈(,+∞),f ′(x)>0,f (x)單調(diào)遞增.                ……2分
①0<t<t+2<,t無解;
②0<t<<t+2,即0<t<時,f (x)min=f ()=-
≤t<t+2,即t≥時,f (x)在[t,t+2]上單調(diào)遞增,f (x)min=f (t)=tlnt;
所以f (x)min.                                                ……5分
(II)2xlnx≥-x2+ax-3,則a≤2lnx+x+,                           ……6分
設(shè)h (x)=2lnx+x+(x>0),則h′(x)=,x∈(0,1),h′(x)<0,h (x)單調(diào)遞減,
x∈(1,+∞),h′(x)>0,h(x)單調(diào)遞增,所以h (x)min=h (1)=4,
因為對一切x∈(0,+∞),2f(x)≥g (x)恒成立,
所以a≤h (x)min=4.……10分
(III)問題等價于證明xlnx>(x∈(0,+∞)),
由(I)可知f (x)=xlnx(x∈(0,+∞))的最小值是-,當(dāng)且僅當(dāng)x=時取到.    
設(shè)m (x)=(x∈(0,+∞)),則m ′(x)=
易得m (x)max=m (1)=-,當(dāng)且僅當(dāng)x=1時取到,
從而對一切x∈(0,+∞),都有l(wèi)nx>.                         ……14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知2≤(x2,求函數(shù)y=2x-2x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對任意的實數(shù)a,b∈[-1,1],當(dāng)a+b
≠0時,都有>0.
(1)若a>b,試比較f(a)與f(b)的大小;
(2)解不等式f(x)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)這兩個函數(shù)的定義域的交集是空集,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,則的取值范圍是(▲)
A.B.(1,)C.[,1)D.[,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),的最大值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的最大值是   (   )
A.-2B.4C.-3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

證明函數(shù)=在區(qū)間上是減函數(shù). (14分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)為奇函數(shù),求實數(shù)的值;
(2)在(1)的條件下,求函數(shù)的值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

當(dāng)時,函數(shù)的最小值為__________________。

查看答案和解析>>

同步練習(xí)冊答案