9.已知函數(shù)f(x)=cos2x+2sinx,x∈[0,α]的值域?yàn)閇1,$\frac{3}{2}$],其中α>0,則角α的取值范圍是[$\frac{π}{6}$,π].

分析 將函數(shù)化簡(jiǎn),轉(zhuǎn)化成二次函數(shù)問(wèn)題,求解a的范圍即可.

解答 解:由函數(shù)f(x)=cos2x+2sinx
可得:f(x)=1-2sin2x+2sinx
=-2(sinx-$\frac{1}{2}$)2+$\frac{3}{2}$,
對(duì)稱軸為sinx=$\frac{1}{2}$,
當(dāng)sinx=$\frac{1}{2}$,即x=$\frac{π}{6}$,f(x)取得最大值為$\frac{3}{2}$,
故α$≥\frac{π}{6}$.
設(shè)sinx=t,則0≤t≤1,則x∈[0,π],
故$\frac{π}{6}$≤α≤π.
故答案為:[$\frac{π}{6}$,π].

點(diǎn)評(píng) 本題考查了三角形的圖象及性質(zhì)運(yùn)用.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若令cos80°=m,則tan(-440°)=( 。
A.$\frac{\sqrt{1-{m}^{2}}}{|m|}$B.$\frac{\sqrt{1-{m}^{2}}}{-m}$C.$\frac{\sqrt{1+{m}^{2}}}{m}$D.$\frac{\sqrt{1-{m}^{2}}}{m}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{1-i}{2i+1}$=( 。
A.$\frac{1}{5}$+$\frac{3}{5}$iB.-$\frac{1}{5}$-$\frac{3}{5}$iC.-$\frac{1}{5}$+$\frac{3}{5}$iD.$\frac{1}{5}$-$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某工廠新招了8名工人,其中有2名車工和3名鉗工,現(xiàn)將這8名工人平均分配給甲、乙兩個(gè)車間,那么車工和鉗工均不能分配到同一個(gè)車間的概率為$\frac{18}{35}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(x)是定義在區(qū)間[-1,1]上的奇函數(shù),且f(-1)=1,若m,n∈[-1,1],m+n≠0時(shí),有$\frac{f(m)+f(n)}{m+n}$<0.
(1)解不等式f(x+$\frac{1}{2}$)<f(1-x);
(2)若f(x)≤t2-2at+1對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知a=4,c=2$\sqrt{2}$,cosA=-$\frac{\sqrt{2}}{4}$.
(1)求b和sinC的值;
(2)求cos(2A+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在邊長(zhǎng)為2的菱形ABCD中,∠BAD=60°,E為BC的中點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{BD}$=(  )
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的原始數(shù)據(jù)記錄如下:
甲運(yùn)動(dòng)員得分:13,51,23,8,26,38,16,33,14,28,39
乙運(yùn)動(dòng)員得分:49,24,12,31,50,31,44,36,15,37,25,36,39
這個(gè)賽季中發(fā)揮更穩(wěn)定的運(yùn)動(dòng)員是乙(填甲或乙).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.為了得到函數(shù)y=cos(x-$\frac{π}{3}$)的圖象,只需將y=sinx的圖象( 。
A.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度B.向左平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向右平移$\frac{5π}{6}$個(gè)單位長(zhǎng)度

查看答案和解析>>

同步練習(xí)冊(cè)答案