4.已知數(shù)列{an}的各項(xiàng)均為正數(shù),觀察程序框圖,若k=1,k=5時(shí),分別有S=$\frac{1}{3}$和S=$\frac{5}{11}$.
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=3n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)根據(jù)程序框圖得出{an}為等差數(shù)列,利用k=1和k=5得出方程組解出a1和d,即可得出an;
(2)使用錯(cuò)位相減法求出Tn

解答 解:(1)由程序框圖可知:{an}為等差數(shù)列,
$\frac{1}{{a}_{1}{a}_{2}}$=$\frac{1}{3}$,
$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+$\frac{1}{{a}_{4}{a}_{5}}$+$\frac{1}{{a}_{5}{a}_{6}}$=$\frac{5}{11}$,
∴$\left\{\begin{array}{l}{\frac{1}nvlzlx9(\frac{1}{{a}_{1}}-\frac{1}{{a}_{1}+d})=\frac{1}{3}}\\{\frac{1}ltjzlx9(\frac{1}{{a}_{1}}-\frac{1}{{a}_{1}+5d})=\frac{5}{11}}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=-1}\\{d=-2}\end{array}\right.$(舍去),
∴an=1+2(n-1)=2n-1.
(2)bn=(2n-1)•3n,
∴Tn=1×3+3×32+5×33+…+(2n-1)×3n
∴3Tn=1×32+3×33+5×34+…+(2n-1)×3n+1,
∴$2{T_n}=-3-2({3^2}+{3^3}+…+{3^n})+{3^{n+1}}(2n-1)=6+{3^{n+1}}(2n-2)$,
∴Tn=3+(n-1)•3n+1

點(diǎn)評(píng) 本題考查了程序框圖,等差數(shù)列的通項(xiàng)公式,錯(cuò)位相減法數(shù)列求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.為了研究子女與父母吸煙的關(guān)系,調(diào)查了一千多名青少年及其家長(zhǎng),數(shù)據(jù)如下:
父母吸煙父母不吸煙總計(jì)
子女吸煙23783
子女不吸煙678
總計(jì)1520
完善上表,并分別利用等高條形圖和獨(dú)立性檢驗(yàn)方法判斷父母吸煙對(duì)子女吸煙是否有影響?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)y=x2+2ax+1(-1≤x≤2)的最小值為-4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.2008年5月12日14時(shí)28分04秒,四川省阿壩藏族羌族自治州汶川縣發(fā)生里氏8.0級(jí)地震,地震造成69227人遇難,374643人受傷,17923人失蹤.重慶眾多醫(yī)務(wù)工作者和志愿者加入了抗災(zāi)救援行動(dòng).其中重慶三峽中心醫(yī)院外科派出由5名骨干醫(yī)生組成的救援小組,奔赴受災(zāi)第一線參與救援.現(xiàn)將這5名醫(yī)生分別隨機(jī)分配到受災(zāi)最嚴(yán)重的汶川縣、北川縣、綿竹三縣中的某一個(gè).
(1)求每個(gè)縣至少分配到一名醫(yī)生的概率.
(2)若將隨機(jī)分配到汶川縣的人數(shù)記為ξ,求隨機(jī)變量ξ的分布列,期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知點(diǎn)A(1-m,0),B(1+m,0),若圓C:x2+y2-8x-8y+31=0上存在一點(diǎn)P使得$\overrightarrow{PA}$•$\overrightarrow{PB}$=0,則正實(shí)數(shù)m的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中,在(0,+∞)上單調(diào)遞減,并且是偶函數(shù)的是(  )
A.y=ln(x2+1)B.y=-x2cosxC.y=-lg|x|D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某射擊隊(duì)的隊(duì)員為在射擊錦標(biāo)賽上取得優(yōu)異成績(jī),正在加緊備戰(zhàn),經(jīng)過(guò)近期訓(xùn)練,某隊(duì)員射擊一次,命中7~10環(huán)的概率如表所示:
命中環(huán)數(shù)10環(huán)9環(huán)8環(huán)7環(huán)
概率0.300.280.180.12
求該射擊隊(duì)員射擊一次,
(1)射中9環(huán)或10環(huán)的概率;
(2)至少命中8環(huán)的概率;
(3)命中不足8環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=x3+ax2+bx+c.
(I)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(II)設(shè)a=b=4,若函數(shù)f(x)有三個(gè)不同零點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=|x+$\frac{6}{a}$|+|x-a|(a>0).
(Ⅰ)證明:f(x)≥2$\sqrt{6}$;
(Ⅱ)若f(3)<7,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案