5.已知y=f(x)是定義在R上的奇函數(shù),f(x)=$\left\{\begin{array}{l}{(x+2)^{2}-1,x<-1}\\{0,-1≤x≤0}\end{array}\right.$,且當(dāng)函數(shù)y=f(x-1)-$\frac{1}{2}$-k(x-2)(其中k>0)的零點(diǎn)個(gè)數(shù)取得最大值時(shí),則實(shí)數(shù)k的取值范圍是($\frac{1}{4},6-\sqrt{30}$).($\sqrt{2}≈$1.414,$\sqrt{30}$≈5.477)

分析 由已知函數(shù)的奇偶性及函數(shù)解析式作出函數(shù)y=f(x-1)的圖象,把函數(shù)y=f(x-1)-$\frac{1}{2}$-k(x-2)(其中k>0)的零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為y=k(x-2)+$\frac{1}{2}$與y=f(x-1)的圖象交點(diǎn)的個(gè)數(shù),數(shù)形結(jié)合得答案.

解答 解:∵y=f(x)是定義在R上的奇函數(shù),且f(x)=$\left\{\begin{array}{l}{(x+2)^{2}-1,x<-1}\\{0,-1≤x≤0}\end{array}\right.$,
∴y=f(x-1)的圖象如圖所示:
y=k(x-2)+$\frac{1}{2}$表示過(guò)點(diǎn)(2,$\frac{1}{2}$),斜率為k的直線(xiàn),
由圖可得,y=k(x-2)+$\frac{1}{2}$與y=f(x-1)的圖象最多有5個(gè)交點(diǎn),
即函數(shù)y=f(x-1)-$\frac{1}{2}$-k(x-2)至多有5個(gè)零點(diǎn).
當(dāng)k=$\frac{1}{4}$時(shí),直線(xiàn)y=k(x-2)+$\frac{1}{2}$過(guò)原點(diǎn),此時(shí)y=k(x-2)+$\frac{1}{2}$與y=f(x-1)的圖象有4個(gè)交點(diǎn),
即函數(shù)y=f(x-1)-$\frac{1}{2}$-k(x-2)有4個(gè)零點(diǎn);
當(dāng)k=6-$\sqrt{30}$時(shí),直線(xiàn)y=k(x-2)+$\frac{1}{2}$與y=f(x-1)的圖象拋物線(xiàn)部分相切,此時(shí)y=k(x-2)+$\frac{1}{2}$
與y=f(x-1)的圖象有4個(gè)交點(diǎn),即函數(shù)y=f(x-1)-$\frac{1}{2}$-k(x-2)有3個(gè)零點(diǎn).
故當(dāng)函數(shù)y=f(x-1)-$\frac{1}{2}$-k(x-2)(其中k>0)的零點(diǎn)個(gè)數(shù)取得最大值時(shí),k∈($\frac{1}{4},6-\sqrt{30}$).
故答案為:($\frac{1}{4},6-\sqrt{30}$).

點(diǎn)評(píng) 本題考查根的存在性與根的個(gè)數(shù)判斷,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖是2017年第一季度五省GDP情況圖,則下列陳述正確的是( 。

①2017年第一季度GDP總量和增速均居同一位的省只有1個(gè);
②與去年同期相比,2017年第一季度五個(gè)省的GDP總量均實(shí)現(xiàn)了增長(zhǎng);
③去年同期的GDP總量前三位是江蘇、山東、浙江;
④2016年同期浙江的GDP總量也是第三位.
A.①②B.②③④C.②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.觀(guān)察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根據(jù)上述規(guī)律,第五個(gè)等式為13+23+33+43+53+63=(21)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某學(xué)校為了研究學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績(jī)(折算成了百分制),規(guī)定成績(jī)?cè)?5分以上(含85分)為優(yōu)秀.列聯(lián)表如下:
數(shù)學(xué)成績(jī)優(yōu)秀(人)數(shù)學(xué)成績(jī)不優(yōu)秀(人)合計(jì)
物理成績(jī)優(yōu)秀(人)a=5b=2a+b=7
物理成績(jī)不優(yōu)秀(人)c=1d=12c+d=13
合計(jì)a+c=6b+d=14n=a+b+c+d=20
(1)將列聯(lián)表補(bǔ)充完整;
(2)若在這20名學(xué)生中任意選擇一人參加比賽,求其物理和數(shù)學(xué)成績(jī)都優(yōu)秀的概率;
(3)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為物理成績(jī)與數(shù)學(xué)成績(jī)有關(guān)系?(參考公式及參考數(shù)據(jù)見(jiàn)卷首)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知極坐標(biāo)系的極點(diǎn)為平面直角坐標(biāo)系xOy的原點(diǎn),極軸為x軸正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,曲線(xiàn)C的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.(α$為參數(shù)),直線(xiàn)l過(guò)點(diǎn)(-1,0),且斜率為$\frac{1}{2}$,射線(xiàn)OM的極坐標(biāo)方程為$θ=\frac{3π}{4}$.
(1)求曲線(xiàn)C和直線(xiàn)l的極坐標(biāo)方程;
(2)已知射線(xiàn)OM與圓C的交點(diǎn)為O,P,與直線(xiàn)l的交點(diǎn)為Q,求線(xiàn)段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.直線(xiàn)$ρcosθ=\frac{1}{2}$被圓ρ=1所截得的弦長(zhǎng)為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知兩曲線(xiàn)的參數(shù)方程分別為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.(0≤θ≤π)$和$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數(shù))則它們的交點(diǎn)坐標(biāo)為$(\frac{4}{3},\frac{1}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為$\left\{\begin{array}{l}{x-2=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),在以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,且與直角坐標(biāo)系有相同的長(zhǎng)度單位的極坐標(biāo)系中,直線(xiàn)l的方程為ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求曲線(xiàn)C的普通方程和直線(xiàn)l的直角坐標(biāo)方程;
(3)求直線(xiàn)l被曲線(xiàn)C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.某市2016年各月平均房?jī)r(jià)同比(與上一年同月比較)和環(huán)比(與相鄰上月比較)漲幅情況如圖所示,根據(jù)此圖考慮該市 2016年各月平均房?jī)r(jià):
①同比2015年有漲有跌;②同比漲幅3月份最大,12月份最;
③1月份最高;④5月比9月高,其中正確結(jié)論的編號(hào)為①.

查看答案和解析>>

同步練習(xí)冊(cè)答案