分析 直線的普通方程為x=$\frac{1}{2}$,圓的普通方程為x2+y2=1,求出圓心(0,0)到直線x=$\frac{1}{2}$的距離d=$\frac{1}{2}$,由此能求出直線$ρcosθ=\frac{1}{2}$被圓ρ=1所截得的弦長(zhǎng).
解答 解:直線$ρcosθ=\frac{1}{2}$的普通方程為x=$\frac{1}{2}$,
圓ρ=1的x2+y2=1,
圓心(0,0)到直線x=$\frac{1}{2}$的距離d=$\frac{1}{2}$,
∴直線$ρcosθ=\frac{1}{2}$被圓ρ=1所截得的弦長(zhǎng):
|AB|=2$\sqrt{1-(\frac{1}{2})^{2}}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點(diǎn)評(píng) 本題考查直線被圓截得的弦長(zhǎng)的求法,考查直角坐標(biāo)方程、極坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{15+\sqrt{17}}}{2}$ | B. | $\frac{{13+\sqrt{17}}}{2}$ | C. | $\frac{{11+\sqrt{17}}}{2}$ | D. | $\frac{{9+\sqrt{17}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$a 2 | B. | $\frac{\sqrt{3}}{4}$a 2 | C. | $\frac{\sqrt{6}}{2}$a 2 | D. | $\sqrt{6}$a 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{99}$ | B. | $\frac{1}{87}$ | C. | $\frac{1}{81}$ | D. | $\frac{1}{85}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一列 | B. | 第二列 | C. | 第三列 | D. | 第四列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{13}$ | C. | 2$\sqrt{5}$ | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com