【題目】在平面直角坐標系中,O為坐標原點,A,B,C三點滿足 = + . (Ⅰ)求證:A,B,C三點共線;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值為 ,求實數(shù)m的值.
【答案】解:(Ⅰ)證明:根據(jù)條件:
=
=
= ;
∴ ;
∴A,B,C三點共線;
(Ⅱ)根據(jù)條件: , = , ,且 ;
∴ = , ;
∴
=﹣sin2x﹣2m2sinx+2
=﹣(sinx+m2)2+m4+2;
又sinx∈[0,1];
∴sinx=1時,f(x)取最小值 ;
即 ;
∴ ;
∴ .
【解析】(Ⅰ)將 代入 ,然后進行向量的數(shù)乘運算即可得出 ,從而得出A,B,C三點共線;(Ⅱ)由條件即可求出 的坐標,進而求出 ,及 的值,代入 并化簡即可得出f(x)=﹣sin2x2m2sinx+2,而配方即可得出sinx=1時,f(x)取最小值 ,從而得到 ,這樣即可解出m的值.
科目:高中數(shù)學 來源: 題型:
【題目】在棱長都相等的四面體P-ABC中,D、E、F分別是AB、BC、CA的中點,則下面四個結(jié)論中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個圓經(jīng)過直線l:2x+y+4=0與圓C:x2+y2+2x﹣4y=0的兩個交點,并且有最小面積,則此圓的方程為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠修建一個長方體形無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設池底長方形長為x米.
(Ⅰ)求底面積并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設計水池能使總造價最低?最低造價是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點的縱坐標不變,橫坐標縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間;
(3)當x∈[﹣ , ]時,求函數(shù)y=f(x+ )﹣ f(x+ )的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線E:x2=2py(p>0),直線y=kx+2與E交于A、B兩點,且 =2,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為(0,﹣2),記直線CA、CB的斜率分別為k1 , k2 , 證明:k12+k22﹣2k2為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A=[a﹣3,a],函數(shù) (﹣2≤x≤5)的單調(diào)減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位要在800名員工中抽去80名員工調(diào)查職工身體健康狀況,其中青年員工400名,中年員工300名,老年員工100名,下列說法錯誤的是( )
A.老年人應作為重點調(diào)查對象,故抽取的老年人應超過40名
B.每個人被抽到的概率相同為
C.應使用分層抽樣抽取樣本調(diào)查
D.抽出的樣本能在一定程度上反映總體的健康狀況
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,平面內(nèi)有三個向量 , , ,其中 與 的夾角為30°, 與 的夾角為90°,且| |=2,| |=2,| |=2 ,若 =λ +μ ,(λ,μ∈R)則( )
A.λ=4,μ=2
B.λ=4,μ=1
C.λ=2,μ=1
D.λ=2,μ=2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com