如圖,在四棱錐中,底面為正方形,
平面,已知,為線段的中點(diǎn).
(1)求證:平面
(2)求四棱錐的體積.
(1)見(jiàn)解析; (2)四棱錐的體積 .

試題分析: (1)注意做輔助線,連結(jié)交于,連結(jié),
根據(jù)中點(diǎn),中點(diǎn),得到
, 即證得平面
(2)分析幾何體的特征,注意發(fā)現(xiàn)“底面”、高是否已存在?如果沒(méi)現(xiàn)成的要注意“一作,二證,三計(jì)算”.
解答本題的關(guān)鍵是確定“垂直關(guān)系”,這也是難點(diǎn)所在,平時(shí)學(xué)習(xí)中,應(yīng)特別注意轉(zhuǎn)化意識(shí)的培養(yǎng),能從“非規(guī)范幾何體”,探索得到線線、線面的垂直關(guān)系.
試題解析:(1)連結(jié)交于,連結(jié),                                1分
為正方形,中點(diǎn),中點(diǎn),
,                                                             4分
平面,平面
平面.                                  5分

(2)作
平面,平面,,
為正方形,,平面,
平面,                                                       7分
,,平面                         8分
平面,平面,
,                                  10分
四棱錐的體積         12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

菱形中,,且,現(xiàn)將三角形沿著折起形成四面體,如圖所示.

(1)當(dāng)為多大時(shí),?并證明;
(2)在(1)的條件下,求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知正方形的邊長(zhǎng)為,點(diǎn)分別在邊上,,現(xiàn)將△沿線段折起到△位置,使得

(1)求五棱錐的體積;
(2)求平面與平面的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正四棱錐的頂點(diǎn)都在同一球面上,若該棱錐的高為4,底面邊長(zhǎng)為2,則該球的表面積是(    )
A.B.16C.9D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圓臺(tái)上、下底面面積分別是π,4π,側(cè)面積是6π,這個(gè)圓臺(tái)的體積是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

三棱錐的各頂點(diǎn)都在一半徑為的球面上,球心上,且有,底面,則球與三棱錐的體積之比是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正三棱錐內(nèi)接于球,且底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為2,則球的表面積為(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若一個(gè)圓錐的側(cè)面展開(kāi)圖是面積為的半圓面,則該圓錐的體積為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一平面截一球得到直徑為6cm的圓面,球心到這個(gè)圓面的距離是4cm,則該球的體積是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案