精英家教網 > 高中數學 > 題目詳情
6.等差數列{an}的各項均為正數,a1=3,前n項和為Sn,數列{bn}的通項公式為${b_n}={8^{n-1}}$且b2S2=64,b3S3=960.
(1)求數列{an}的通項公式an;
(2)求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$.

分析 (1)利用兩個等式得到關于公差d是方程組解之;
(2)利用(1)的結論得到前n項和為Sn,利用裂項相消求和.

解答 解:(1)設等差數列{an}的公差為d(d>0),則由題意,b1=1,b2=8,b3=64,所以$\left\{\begin{array}{l}{8(6+d)=64}\\{64(9+3d)=640}\end{array}\right.$解得:d=2,∴an=2n+1;
(2)由(1)可得:${S_n}={n^2}+2n$
∴$\frac{1}{S_n}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$
∴$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}=\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})=\frac{3}{4}-\frac{1}{2}(\frac{1}{n+1}+\frac{1}{n+2})$.

點評 本題考查了等差數列與等比數列的通項公式以及裂項相消法求數列的和;比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

4.函數f(x)=$\frac{{2}^{x}-1}{\sqrt{lo{g}_{\frac{1}{2}}(3-2x)+1}}$的定義域是($\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知函數f(x)=|$\frac{1}{3}$x-lnx|,若關于x的方程f(x)=mx有4個不同的解,則實數m的取值范圍為(0,$\frac{1}{e}$-$\frac{1}{3}$).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC.
(Ⅰ)求證:AC⊥PB;
(Ⅱ)若AB=AC=AP=2,設D,E分別為棱AC,AP的中點,F為△ABD內一點,且滿足$\overrightarrow{DF}=\frac{1}{3}(\overrightarrow{DA}+\overrightarrow{DB})$,求直線BD與EF所成角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知在直三棱柱ABC-A1B1C1中,CA=CC1=2CB,∠ACB=90°,則直線BC1與AB1夾角的余弦值為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{3}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x<1}\\{-2x+3,x≥1}\end{array}\right.$,則f[f(2)]=2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.若某市8所中學參加中學生比賽的得分用莖葉圖表示(如圖)其中莖為十位數,葉為個位數,則這組數據的平均數和方差分別是( 。
A.91、5B.91、5.5C.92、5.5D.92、5

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知P(x,y)在不等式$\left\{\begin{array}{l}2x+y≥4\\ x-y≥0\\ x-2y≤2\end{array}\right.$所確定的平面區(qū)域內,則z=3x-y的最小值為(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.函數$f(x)=\frac{lg(x+1)}{x}$的定義域是( 。
A.(-1,0)∪(0,+∞)B.[-1,0)∪(0,+∞)C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

同步練習冊答案