【題目】目前,中國有三分之二的城市面臨“垃圾圍城”的窘境. 我國的垃圾處理多采用填埋的方式,占用上萬畝土地,并且嚴(yán)重污染環(huán)境. 垃圾分類把不易降解的物質(zhì)分出來,減輕了土地的嚴(yán)重侵蝕,減少了土地流失. 2020年5月1日起,北京市將實行生活垃圾分類,分類標(biāo)準(zhǔn)為廚余垃圾、可回收物、有害垃圾和其它垃圾四類 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既環(huán)保,又節(jié)約資源. 如:回收利用1噸廢紙可再造出0.8噸好紙,可以挽救17棵大樹,少用純堿240千克,降低造紙的污染排放75%,節(jié)省造紙能源消耗40%~50%.
現(xiàn)調(diào)查了北京市5個小區(qū)12月份的生活垃圾投放情況,其中可回收物中廢紙和塑料品的投放量如下表:
小區(qū) | 小區(qū) | 小區(qū) | 小區(qū) | 小區(qū) | |
廢紙投放量(噸) | 5 | 5.1 | 5.2 | 4.8 | 4.9 |
塑料品投放量(噸) | 3.5 | 3.6 | 3.7 | 3.4 | 3.3 |
(Ⅰ)從這5個小區(qū)中任取1個小區(qū),求該小區(qū)12月份的可回收物中,廢紙投放量超過5噸且塑料品投放量超過3.5噸的概率;
(Ⅱ)從這5個小區(qū)中任取2個小區(qū),記為12月份投放的廢紙可再造好紙超過4噸的小區(qū)個數(shù),求的分布列及期望.
【答案】(Ⅰ);(Ⅱ)詳見解析.
【解析】
(Ⅰ)基本事件的總數(shù)為5,隨機(jī)事件中含有的基本事件的個數(shù)為2,從而可得隨機(jī)事件的概率.
(Ⅱ)利用超幾何分布可求X的分布列及期望.
解:(Ⅰ)記“該小區(qū)12月份的可回收物中廢紙投放量超過5噸且塑料品投放量超過3.5噸”為事件.
由題意,有兩個小區(qū)12月份的可回收物中廢紙投放量超過5噸且塑料品投放量超過3.5噸,所以.
(Ⅱ)因為回收利用1噸廢紙可再造出0.8噸好紙,
所以12月份投放的廢紙可再造好紙超過4噸的小區(qū)有,共2個小區(qū).
的所有可能取值為0,1,2.
;
;
.
所以的分布列為:
0 | 1 | 2 | |
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線: 與曲線交于點與直線交于點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在某次考試中,從甲乙兩個班各抽取10名學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計分析,兩個班成績的莖葉圖如圖所示,成績不小于90分的為及格.
(1)用樣本估計總體,請根據(jù)莖葉圖對甲乙兩個班級的成績進(jìn)行比較.
(2)求從甲班10名學(xué)生和乙班10名學(xué)生中各抽取一人,已知有人及格的條件下乙班同學(xué)不及格的概率;
(3)從甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人數(shù)記為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有人收集了七月份的日平均氣溫(攝氏度)與某次冷飲店日銷售額(百元)的有關(guān)數(shù)據(jù),為分析其關(guān)系,該店做了五次統(tǒng)計,所得數(shù)據(jù)如下:
日平均氣溫(攝氏度) | 31 | 32 | 33 | 34 | 35 |
日銷售額(百元) | 5 | 6 | 7 | 8 | 10 |
由資料可知,關(guān)于的線性回歸方程是,給出下列說法:
①;
②日銷售額(百元)與日平均氣溫(攝氏度)成正相關(guān);
③當(dāng)日平均氣溫為攝氏度時,日銷售額一定為百元.
其中正確說法的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:和直線:,是的焦點,是上一點,過作拋物線的一條切線與軸交于,則外接圓面積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且橢圓過點
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與交于、兩點,點在橢圓上,是坐標(biāo)原點,若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教材曾有介紹:圓上的點處的切線方程為。我們將其結(jié)論推廣:橢圓上的點處的切線方程為,在解本題時可以直接應(yīng)用。已知,直線與橢圓有且只有一個公共點.
(1)求的值;
(2)設(shè)為坐標(biāo)原點,過橢圓上的兩點、分別作該橢圓的兩條切線、,且與交于點。當(dāng)變化時,求面積的最大值;
(3)在(2)的條件下,經(jīng)過點作直線與該橢圓交于、兩點,在線段上存在點,使成立,試問:點是否在直線上,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在改革開放40年成就展上某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程.
(2)根據(jù)線性回歸方程預(yù)測2020年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計分別為,.(參考數(shù)據(jù):,計算結(jié)果保留到小數(shù)點后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“互倒函數(shù)”的定義如下:對于定義域內(nèi)每一個,都有成立,若現(xiàn)在已知函數(shù)是定義域在的“互倒函數(shù)”,且當(dāng)時,成立.若函數(shù)()都恰有兩個不同的零點,則實數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com