分析 (1)根據(jù)函數(shù)奇偶性的定義證明函數(shù)的奇偶性即可;(2)根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)的單調(diào)性,得到關(guān)于a的不等式,解出即可.
解答 解:(1)函數(shù)f(x)是偶函數(shù),
函數(shù)f(x)的定義域?yàn)镽,
且f(-x)=(-x)2-2|-x|=x2-2|x|=f(x),
所以函數(shù)f(x)是偶函數(shù).
(2)當(dāng)x∈(1,+∞)時(shí),f(x)=x2-2x,
所以函數(shù)f(x)在(1,+∞)上是增函數(shù),
$|a|+\frac{3}{2}>1$,f(2)=0,由$f(|a|+\frac{3}{2})>f(2)$,
且函數(shù)f(x)在(1,+∞)上是增函數(shù),
知$|a|+\frac{3}{2}>2$,$|a|>\frac{1}{2}$,所以$a>\frac{1}{2}$或$a<-\frac{1}{2}$,
即不等式$f(|a|+\frac{3}{2})>0$的解集是$\{a|a>\frac{1}{2}$或$a<-\frac{1}{2}\}$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、奇偶性問(wèn)題,考查解不等式問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{1}{{e}^{2}}$,+∞) | B. | (-1,$\frac{1}{{e}^{2}}$] | C. | [-$\frac{1}{{e}^{2}}$,1) | D. | (-∞,-$\frac{1}{{e}^{2}}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個(gè)單位 | B. | 向左平移$\frac{π}{3}$個(gè)單位 | ||
C. | 向右平移$\frac{π}{6}$個(gè)單位 | D. | 向右平移$\frac{π}{3}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com