【題目】現(xiàn)給出三個(gè)條件:①函數(shù)的圖象關(guān)于直線對(duì)稱;②函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;③函數(shù)的圖象上相鄰兩個(gè)最高點(diǎn)的距離為.從中選出兩個(gè)條件補(bǔ)充在下面的問題中,并以此為依據(jù)求解問題.
已知函數(shù)(,),_____,_____.求函數(shù)在區(qū)間上的最大值和最小值.
【答案】見解析
【解析】
方案①③與②③,都有周期可求得,再由型函數(shù)的對(duì)稱軸與對(duì)稱中心求得,即可表示解析式,最后由三角函數(shù)的性質(zhì)求得指定區(qū)間的最值;方案①②中,由對(duì)稱軸與對(duì)稱中心可構(gòu)建方程組,分別表示與,利用分類討論和時(shí)的情況,其中若T小于所求區(qū)間范圍的區(qū)間長(zhǎng)度,則最值由振幅確定,反之則可由性質(zhì)求值域.
方案一:選①③.由已知,函數(shù)的最小正周期,
所以,,所以.
令,得,.
所以的對(duì)稱軸方程為,.
令,,由,得.
綜上,.
因?yàn)?/span>,所以.
所以當(dāng)或,即或時(shí),;
當(dāng),即時(shí),.
方案二:選②③.由已知,函數(shù)的最小正周期,
所以,,所以.
所以,于是,.
由,得.
綜上,.
因?yàn)?/span>,所以.
所以當(dāng),即時(shí),;
當(dāng),即時(shí),.
方案三:選①②.由已知可知其中一個(gè)對(duì)稱軸與對(duì)稱中心,
則,解得
因?yàn)?/span>,則,即或0
當(dāng)時(shí),
因?yàn)?/span>,則
當(dāng)時(shí),,則
又因?yàn)閰^(qū)間的區(qū)間長(zhǎng)度為,所以函數(shù)在區(qū)間上的最大值為和最小值為,顯然時(shí)也成立,
當(dāng)時(shí),
因?yàn)?/span>,則
當(dāng)時(shí),,則
此時(shí)函數(shù),則其在區(qū)間上有,即,故最大值為,最小值為,
當(dāng)時(shí),,則,所以函數(shù)在區(qū)間上的最大值為和最小值為,顯然時(shí)也成立
綜上所述,函數(shù)和函數(shù)在區(qū)間上的最大值為和最小值為;函數(shù)在區(qū)間上最大值為,最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)從甲乙兩個(gè)教師所教班級(jí)的學(xué)生中隨機(jī)抽取100人,每人分別對(duì)兩個(gè)教師進(jìn)行評(píng)分,滿分均為100分,整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:,,,,,.得到甲教師的頻率分布直方圖,和乙教師的頻數(shù)分布表:
乙教師分?jǐn)?shù)頻數(shù)分布表 | |
分?jǐn)?shù)區(qū)間 | 頻數(shù) |
3 | |
3 | |
15 | |
19 | |
35 | |
25 |
(1)在抽樣的100人中,求對(duì)甲教師的評(píng)分低于70分的人數(shù);
(2)從對(duì)乙教師的評(píng)分在范圍內(nèi)的人中隨機(jī)選出2人,求2人評(píng)分均在范圍內(nèi)的概率;
(3)如果該校以學(xué)生對(duì)老師評(píng)分的平均數(shù)是否大于80分作為衡量一個(gè)教師是否可評(píng)為該年度該校優(yōu)秀教師的標(biāo)準(zhǔn),則甲、乙兩個(gè)教師中哪一個(gè)可評(píng)為年度該校優(yōu)秀教師?(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】環(huán)境問題是當(dāng)今世界共同關(guān)注的問題,我國(guó)環(huán)?偩指鶕(jù)空氣污染指數(shù)濃度,制定了空氣質(zhì)量標(biāo)準(zhǔn):
空氣污染質(zhì)量 | ||||||
空氣質(zhì)量等級(jí) | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
某市政府為了打造美麗城市,節(jié)能減排,從2010年開始考查了連續(xù)六年11月份的空氣污染指數(shù),繪制了頻率分布直方圖,經(jīng)過分析研究,決定從2016年11月1日起在空氣質(zhì)量重度污染和嚴(yán)重污染的日子對(duì)機(jī)動(dòng)車輛限號(hào)出行,即車牌尾號(hào)為單號(hào)的車輛單號(hào)出行,車牌尾號(hào)為雙號(hào)的車輛雙號(hào)出行(尾號(hào)為字母的,前13個(gè)視為單號(hào),后13個(gè)視為雙號(hào)).
(1)某人計(jì)劃11月份開車出行,求因空氣污染被限號(hào)出行的概率;
(2)該市環(huán)保局為了調(diào)查汽車尾氣排放對(duì)空氣質(zhì)量的影響,對(duì)限行三年來(lái)的11月份共90天的空氣質(zhì)量進(jìn)行統(tǒng)計(jì),其結(jié)果如表:
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
天數(shù) | 16 | 39 | 18 | 10 | 5 | 2 |
根據(jù)限行前六年180天與限行后90天的數(shù)據(jù),計(jì)算并填寫列聯(lián)表,并回答是否有的把握認(rèn)為空氣質(zhì)量的優(yōu)良與汽車尾氣的排放有關(guān).
空氣質(zhì)量?jī)?yōu)良 | 空氣質(zhì)量污染 | 合計(jì) | |
限行前 | |||
限行后 | |||
合計(jì) |
參考數(shù)據(jù):
其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在的偶函數(shù),且.當(dāng)時(shí),,若方程有300個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由團(tuán)中央學(xué)校部、全國(guó)學(xué)聯(lián)秘書處、中國(guó)青年報(bào)社共同舉辦的2018年度全國(guó)“最美中學(xué)生”尋訪活動(dòng)結(jié)果出爐啦,此項(xiàng)活動(dòng)于2018年6月啟動(dòng),面向全國(guó)中學(xué)在校學(xué)生,通過投票方式尋訪一批在熱愛祖國(guó)、勤奮學(xué)習(xí)、熱心助人、見義勇為等方面表現(xiàn)突出、自覺樹立和踐行社會(huì)主義核心價(jià)值觀的“最美中學(xué)生”.現(xiàn)隨機(jī)抽取了30名學(xué)生的票數(shù),繪成如圖所示的莖葉圖,若規(guī)定票數(shù)在65票以上(包括65票)定義為風(fēng)華組.票數(shù)在65票以下(不包括65票)的學(xué)生定義為青春組.
(1)如果用分層抽樣的方法從青春組和風(fēng)華組中抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人,那么至少有1人在青春組的概率是多少?
(2)用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機(jī)選取4人,用表示所選4人中青春組的人數(shù),試寫出的分布列,并求出的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,四邊形,均為正方形,且,M為的中點(diǎn),N為的中點(diǎn).
(1)求證:平面ABC;
(2)求二面角的正弦值;
(3)設(shè)P是棱上一點(diǎn),若直線PM與平面所成角的正弦值為,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)全面二孩政策已于2016年1月1日起正式實(shí)施.國(guó)家統(tǒng)計(jì)局發(fā)布的數(shù)據(jù)顯示,從2012年到2017年,中國(guó)的人口自然增長(zhǎng)率變化始終不大,在5‰上下波動(dòng)(如圖).
為了了解年齡介于24歲至50歲之間的適孕夫妻對(duì)生育二孩的態(tài)度如何,統(tǒng)計(jì)部門按年齡分為9組,每組選取150對(duì)夫妻進(jìn)行調(diào)查統(tǒng)計(jì)有生育二孩意愿的夫妻數(shù),得到下表:
年齡區(qū)間 | |||||||||
有意愿數(shù) | 80 | 81 | 87 | 86 | 84 | 83 | 83 | 70 | 66 |
(1)設(shè)每個(gè)年齡區(qū)間的中間值為,有意愿數(shù)為,求樣本數(shù)據(jù)的線性回歸直線方程,并求該模型的相關(guān)系數(shù)(結(jié)果保留兩位小數(shù));
(2)從,,,,這五個(gè)年齡段中各選出一對(duì)夫妻(能代表該年齡段超過半數(shù)夫妻的意愿)進(jìn)一步調(diào)研,再?gòu)倪@5對(duì)夫妻中任選2對(duì)夫妻.求其中恰有一對(duì)不愿意生育二孩的夫妻的概率.
(參考數(shù)據(jù)和公式:,,,,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著手機(jī)的發(fā)展,“微信”逐漸成為人們支付購(gòu)物的一種形式.某機(jī)構(gòu)對(duì)“使用微信支付”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信支付”贊成人數(shù)如下表.
年齡 (單位:歲) | , | , | , | , | , | , |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信支付”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(Ⅱ)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽取5人進(jìn)行追蹤調(diào)查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com