1.已知x>y>0,則x+$\frac{1}{{({x-y})y}}$的最小值是(  )
A.2B.3C.4D.9

分析 由x+$\frac{1}{{({x-y})y}}$=x-y+$\frac{1}{{({x-y})y}}$+y,利用基本不等式的性質(zhì)求解即可.

解答 解:∵x>y>0,
∴x+$\frac{1}{{({x-y})y}}$=x-y+$\frac{1}{{({x-y})y}}$+y≥3•$\root{3}{(x-y)•y•\frac{1}{(x-y)y}}$=3,
當(dāng)且僅當(dāng)x=2,y=1時(shí)取等號,
故x+$\frac{1}{{({x-y})y}}$的最小值是3,
故選:B.

點(diǎn)評 本題考查了基本不等式的性質(zhì),注意利用基本不等式時(shí)滿足:一正二定三相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{2lnx,x>1}\end{array}\right.$,則函數(shù)|f(x)|≥2的解集為(  )
A.[-1,e)B.(-∞,-1]∪[e,+∞)C.(-∞,-1]∪[e,+∞)D.[e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知正實(shí)數(shù)x,y滿足xy=9,則x+9y取得最小值時(shí)x=9,y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在某校舉行的數(shù)學(xué)競賽中,全體參賽學(xué)生的競賽成績近似地服從正態(tài)分布N(70,100).已知成績在90分以上的學(xué)生有12人.
(1)試問此次參賽學(xué)生的總數(shù)約為多少人?
(2)若成績在80分以上(含80分)為優(yōu),試問此次競賽成績?yōu)閮?yōu)的學(xué)生約為多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.給出下列四個(gè)命題:
①函數(shù)y=2sin(2x-$\frac{π}{3}$)的一條對稱軸是x=$\frac{5π}{12}$;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)($\frac{π}{2}$,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù)
④存在實(shí)數(shù)α,使$\sqrt{2}$sin(α+$\frac{π}{4}}$)=$\frac{3}{2}$
以上四個(gè)命題中正確的有①②(填寫正確命題前面的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.sin2x-sinxcosx+2cos2x=( 。
A.$\frac{\sqrt{2}}{2}$sin(2x+$\frac{3π}{4}$)+$\frac{3}{2}$B.$\frac{\sqrt{2}}{2}$sin(2x+$\frac{3π}{4}$)C.sin(2x+$\frac{π}{4}$)D.$\sqrt{2}$sin(2x-$\frac{π}{4}$)+$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若-cosx+sinx=$\sqrt{2}$sin(x+α)則tanα為( 。
A.1B.-1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,直線l過M(2,0),傾斜角為α(α≠0).以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(Ⅰ)求直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C交于A、B兩點(diǎn),且|MA|=2|MB|,求直線l的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線C:y2=-2px(p>0)的焦點(diǎn)為F,在拋物線C上存在點(diǎn)M,使得點(diǎn)F關(guān)于M的對稱點(diǎn)為M'($\frac{2}{5}$,$\frac{8}{5}$),且|MF|=1.
(1)求拋物線C的方程;
(2)若直線MF與拋物線C的另一個(gè)交點(diǎn)為N,且以MN為直徑的圓恰好經(jīng)過y軸上一點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案