已知集合A={x|2≤x≤3},定義在集合A上的函數(shù)y=logax(a>0,a≠1)的最大值與最小值的和是2,則a=
 
考點(diǎn):函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對(duì)數(shù)函數(shù)的單調(diào)性,直接得到最值之和,然后求解即可.
解答: 解:因?yàn)樽畲笾岛妥钚≈抵褪莑oga2+loga3=2,所以loga6=2,所以a=
6

故答案為:
6
;
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的最值的求法與應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有甲、乙兩種相互獨(dú)立的預(yù)防措施可以降低某地區(qū)某災(zāi)情的發(fā)生.單獨(dú)采用甲、乙預(yù)防措施后,災(zāi)情發(fā)生的概率分別為0.08和0.10,且各需要費(fèi)用60萬(wàn)元和50萬(wàn)元.在不采取任何預(yù)防措施的情況下發(fā)生災(zāi)情的概率為0.3.如果災(zāi)情發(fā)生,將會(huì)造成800萬(wàn)元的損失.(設(shè)總費(fèi)用=采取預(yù)防措施的費(fèi)用+可能發(fā)生災(zāi)情損失費(fèi)用)
( I)若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨(dú)采用,他們各自總費(fèi)用是多少?
( II)若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨(dú)采用、聯(lián)合采用或不采用,請(qǐng)確定預(yù)防方案使總費(fèi)用最少的那個(gè)方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把3個(gè)大小完全相同且分別標(biāo)有1、1、2編號(hào)的小球,隨機(jī)放到4個(gè)編號(hào)為A、B、C、D的盒子中.
(Ⅰ)求2號(hào)小球恰好放在B號(hào)盒子的概率;
(Ⅱ)記ξ為落在A盒中所有小球編號(hào)的數(shù)字之和(若盒中無(wú)球,則數(shù)字之和為0),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
m2x+
2
2x+1
是奇函數(shù).
(1)求m;
(2)求f(x)的值域;
(3)判斷f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓x2+y2=2x+2y上到直線x+y+1=0的距離為
2
的點(diǎn)的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:x+2y+2-a=0被圓C:x2+y2-2x+2y=0截得的弦長(zhǎng)為
6
5
5
,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

近年來(lái)空氣污染是一個(gè)生活中重要的話題,PM2.5就是其中一個(gè)指標(biāo).PM2.5指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí):在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).淮北相山區(qū)2014年12月1日至I0日每天的PM2.5監(jiān)測(cè)數(shù)據(jù)如莖葉圖所示.
(1)期間的某天小劉來(lái)此地旅游,求當(dāng)天PM2.5日均監(jiān)測(cè)數(shù)據(jù)未超標(biāo)的概率;
(2)陶先生在此期間也有兩天經(jīng)過(guò)此地,這兩天此地PM2.5監(jiān)測(cè)數(shù)據(jù)均未超標(biāo).請(qǐng)計(jì)算出這兩天空氣質(zhì)量恰好有一天為一級(jí)的概率;
(3)從所給10天的數(shù)據(jù)中任意抽取三天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x和y之間的幾何數(shù)據(jù)(見(jiàn)表),假設(shè)根據(jù)右表數(shù)據(jù)所得線性回歸直線方程為y=
b
x+
a
,某同學(xué)根據(jù)上表中的兩組數(shù)據(jù)(3,1)和(4,3)求得的直線方程為y=
b
x+a′,請(qǐng)根據(jù)散點(diǎn)圖的分布情況,判斷以下結(jié)論正確的是( 。
x123456
y021334
A、
b
>b′,
a
>a′
B、
b
>b′,
a
<a′
C、
b
<b′,
a
<a′
D、
b
<b′,
a
>a′

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題的否定為假命題的是(  )
A、?x∈R,x2-2x+2≤0
B、任意一個(gè)平面四邊形的四個(gè)頂點(diǎn)共圓
C、樣本的中位數(shù)一定在樣本中
D、線性回歸直線一定經(jīng)過(guò)樣本中心點(diǎn)(
.
x
.
y

查看答案和解析>>

同步練習(xí)冊(cè)答案