7.若函數(shù)f(x)=log0.2(5+4x-x2)在區(qū)間(a-1,a+1)上遞減,且b=lg0.2,c=20.2,則(  )
A.c<b<aB.b<c<aC.a<b<cD.b<a<c

分析 利用復合函數(shù)的單調(diào)性求出函數(shù)f(x)=log0.2(5+4x-x2)減區(qū)間,再由函數(shù)f(x)=log0.2(5+4x-x2)在區(qū)間(a-1,a+1)上遞減求出a的范圍,然后利用指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)比較b,c與0和1的大小,則答案可求.

解答 解:由5+4x-x2>0,得-1<x<5,
又函數(shù)t=5+4x-x2的對稱軸方程為x=2,
∴復合函數(shù)f(x)=log0.2(5+4x-x2)的減區(qū)間為(-1,2),
∵函數(shù)f(x)=log0.2(5+4x-x2)在區(qū)間(a-1,a+1)上遞減,
∴$\left\{\begin{array}{l}{a-1≥-1}\\{a+1≤2}\end{array}\right.$,則0≤a≤1.
而b=lg0.2<0,c=20.2>1,
∴b<a<c.
故選:D.

點評 本題主要考查了復合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對應復合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進行判斷,判斷的依據(jù)是“同增異減”,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=x3-3x2-ax+5-a,若存在唯一的正整數(shù)x0,使得f(x0)<0,則a的取值范圍是(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{5}{4}$]C.($\frac{1}{3}$,$\frac{3}{2}$]D.($\frac{5}{4}$,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)f(x)=x+sinx在x=$\frac{π}{2}$處的切線與兩坐標軸圍成的三角形的面積為(  )
A.$\frac{1}{2}$B.$\frac{π^2}{4}$C.$\frac{π^2}{2}$D.$\frac{π^2}{4}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-4≥0}\\{2y-3≤0}\end{array}\right.$,則z=$\frac{y+1}{x}$的取值范圍是[$\frac{5}{8}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知p:-x2+7x+8≥0,q:x2-2x+1-4m2≤0(m>0).
(1)若p是q的充分不必要條件,求實數(shù)m的取值范圍.
(2)若“非p”是“非q”的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(Ⅰ)在等差數(shù)列中,已知d=2,a15=-10,求a1與Sn
(Ⅱ)在2與64中間插入4個數(shù)使它們成等比數(shù)列,求該數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=cosxB.y=-|x|+1C.y=2|x|D.$y={log_{\frac{1}{2}}}x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)已知冪函數(shù)f(x)=(-2m2+m+2)x-2m+1為偶函數(shù),求函數(shù)f(x)的解析式;
(2)已知x+x-1=3(x>1),求x2-x-2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.計算$\root{3}{(2-π)^{3}}$+$\sqrt{(3-π)^{2}}$的值為(  )
A.5B.-1C.2π-5D.5-2π

查看答案和解析>>

同步練習冊答案