8.已知函數(shù)f(x)=3x+sinx-2cosx的圖象在點(diǎn)A(x0,f(x0))處的切線斜率為3,則tanx0的值是(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\sqrt{3}$D.$-\sqrt{3}$

分析 由題意,求導(dǎo)f′(x)=3+cosx+2sinx,從而得f′(x0)=3+cosx0+2sinx0=3,從而解得tanx0的值.

解答 解:由題意,
f′(x)=3+cosx+2sinx;
∵函數(shù)f(x)=3x+sinx-2cosx的圖象在點(diǎn)A(x0,f(x0))處的切線斜率為3,
∴f′(x0)=3+cosx0+2sinx0=3;
∴cosx0+2sinx0=0,
∴tanx0=-$\frac{1}{2}$,
故選:B.

點(diǎn)評(píng) 本題考查了求導(dǎo)及導(dǎo)數(shù)的幾何意義,同時(shí)考查了三角函數(shù)的轉(zhuǎn)化,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,AD∥BC,AD⊥DC,AD=DC=3,BC=2,$PD=\sqrt{2}PA=\sqrt{6}$,點(diǎn)F在棱PG上,且FC=2FP,點(diǎn)E在棱AD上,且PA∥平面BEF.
(1)求證:PE⊥平面ABCD;
(2)求二面角P-EB-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬(wàn)元)的幾組對(duì)照數(shù)據(jù):
x(年)  3       4     5   6
y(萬(wàn)元)    2.5    3    4  4.5 
(1)若知道y對(duì)x呈線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+a
(2)已知工廠技改前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬(wàn)元.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技改后使用10年的維修費(fèi)用比技改前降低多少?
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=y-$\stackrel{∧}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線l:(2k+1)x+(k-1)y-(4k-1)=0(k∈R)與圓C:x2+y2-4x-2y+1=0交于A,B兩點(diǎn).
(1)求|AB|最小時(shí)直線l的方程,并求此時(shí)|AB|的值;
(2)求過(guò)點(diǎn)P(4,4)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.一盒中裝有除顏色外其余均相同的12個(gè)小球,從中隨機(jī)取出1個(gè)球,取出紅球的概率為$\frac{5}{12}$,取出黑球的概率為$\frac{1}{3}$,取出白球的概率為$\frac{1}{6}$,取出綠球的概率為$\frac{1}{12}$.求:
(1)取出的1個(gè)球是紅球或黑球的概率;
(2)取出的1個(gè)球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{2}$,且過(guò)點(diǎn)$A(\frac{3}{2},-\frac{1}{2})$.
(1)求橢圓的方程;
(2)在橢圓C上一點(diǎn)P,使它到直線l:x+y+4=0的距離最短,求點(diǎn)P坐標(biāo);  并求出最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知Rt△ABC,點(diǎn)D為斜邊BC的中點(diǎn),|$\overrightarrow{AB}$|=6$\sqrt{3}$,|$\overrightarrow{AC}$|=6,$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{ED}$,則$\overrightarrow{AE}$•$\overrightarrow{EB}$等于( 。
A.-14B.-9C.9D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知f(x)=(-x2+x-1)ex(e是自然對(duì)數(shù)的底數(shù))的圖象與g(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+m的圖象有3個(gè)不同的交點(diǎn),則m的取值范圍是($\frac{3}{e}$-$\frac{1}{6}$,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知xy=$\frac{1}{2}$,x,y∈(0,1),則$\frac{2}{1-x}$+$\frac{1}{1-y}$的最小值為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案