15.已知函數(shù)f(x)=$\frac{x}{x-1}$,則在點(2,f(2))處的切線方程為x+y-4=0.(寫成一般式方程)

分析 求出原函數(shù)的導(dǎo)函數(shù),得到f′(2)=2,再求出f(2),由直線方程的點斜式得答案.

解答 解:∵f(x)=$\frac{x}{x-1}$,
∴f′(x)=$\frac{x-1-x}{(x-1)^{2}}$=-$\frac{1}{(x-1)^{2}}$,
∴f′(2)=-1,
又f(2)=2,
∴函數(shù)f(x)=$\frac{x}{x-1}$在點(2,f(2))處的切線方程為y-2=-(x-2),
即y=-x+4.
故答案為:x+y-4=0.

點評 本題考查了利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,過曲線上某點的切線的斜率,就是函數(shù)在該點處的導(dǎo)數(shù)值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\frac{π}{2}$<α<π,-π<β<0,tanα=-$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,則2α+β=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)a>3,數(shù)列{an}中,a1=a,an+1=$\frac{{{a}_{n}}^{2}}{2{a}_{n}-3}$,n∈N*
(Ⅰ)求證:an>3,且$\frac{{a}_{n+1}}{{a}_{n}}$<1;
(Ⅱ)當(dāng)a≤4時,證明:an≤3+$\frac{1}{{5}^{n-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式x2-5x≤0的解集是{x|0≤x≤5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2+$\frac{1}{x-a}$的圖象經(jīng)過點(2,3),a為常數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)用函數(shù)單調(diào)性定義證明f(x)在(a,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x2+bx+c滿足f(1-x)=f(1+x),f(0)>0,且f(m)=f(n)=0(m≠n),則${log_3}m-{log_{\frac{1}{3}}}n$的值( 。
A.大于0B.等于0C.小于0D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若命題“?x∈[1,3],x2-2≤a”為真命題,則實數(shù)a的最小值為( 。
A.-2B.-1C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)a∈R,則“a>1”是“a2>l”的充分不必要條件.
(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是定義在R上的奇函數(shù),則f(1)=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案