【題目】某企業(yè)生產的某種產品被檢測出其中一項質量指標存在問題.該企業(yè)為了檢查生產該產品的甲,乙兩條流水線的生產情況,隨機地從這兩條流水線上生產的大量產品中各抽取50件產品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在內,則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.

(Ⅰ)根據(jù)圖1,估計乙流水線生產產品該質量指標值的中位數(shù);

(Ⅱ)若將頻率視為概率,某個月內甲,乙兩條流水線均生產了5000件產品,則甲,乙兩條流水線分別生產出不合格品約多少件?

(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認為該企業(yè)生產的這種產品的質量指標值與甲,乙兩條流水線的選擇有關?

甲生產線

乙生產線

合計

合格品

不合格品

合計

附:(其中為樣本容量)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(I);(II) ;(III)沒有85%的把握認為“該企業(yè)生產的這種產品的該項質量指標值與甲,乙兩條流水線的選擇有關”.

【解析】試題分析:(I)由頻率分步直方圖,結合中位數(shù)定義,可利用面積進行計算,中位數(shù)所在位置將所有小矩形的面積一分為二;(II)由頻率知概率,已知樣本容量,可利用概率求得甲乙產品合格,不合格的個數(shù);(III)由列聯(lián)表可求得值,查表可得對應概率.

試題解析:

(Ⅰ)設乙流水線生產產品質量指標值的中位數(shù)為,因為

解得

(Ⅱ)由甲乙兩條流水線各抽取的50件產品可得,甲流水線生產的不合格品有15件, 則甲流水線生產產品為不合格品的概率為 乙流水線生產產品為不合格品的概率為, 于是,若某個月內甲,乙兩條流水線均生產了5000件產品,則甲,乙兩條流水線生產的不合格品件數(shù)分別為

(Ⅲ)列聯(lián)表:

甲生產線

乙生產線

合計

合格品

35

40

75

不合格品

15

10

25

合計

50

50

100

,

因為

所以沒有85%的把握認為“該企業(yè)生產的這種產品的該項質量指標值與甲乙兩條流水線 的選擇有關”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為響應市政府“綠色出行”的號召,王老師每個工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費用是3元,騎共享單車單程所需的費用是1元.記王老師在一個工作日內上下班所花費的總交通費用為X元,假設王老師上下班選擇出行方式是相互獨立的.

(I)求X的分布列和數(shù)學期望

(II)已知王老師在2017年6月的所有工作日(按22個工作日計)中共花費交通費用110元,請判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說明理由.

原則:設表示王老師某月每個工作日出行的平均費用,若,則有95%的把握認為王老師該月的出行規(guī)律與前幾個月的出行規(guī)律相比有明顯變化.(注:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,ABC的三個內角為A,B,C,m=sin B+sin C,0,n=0,sin A

|m|2-|n|2=sin Bsin C

1求角A的大小

2求sin B+sin C的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點

(Ⅰ)求橢圓的方程.

(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=是奇函數(shù),且f(2)=.

(1)求實數(shù)mn的值;

(2)判斷函數(shù)f(x)在(-∞,0)上的單調性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某林區(qū)的森林蓄積量每年比上一年平均增長9.5%,要增長到原來的x,需經(jīng)過y,則函數(shù)yf(x)的圖像大致為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程y=kx- (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.

(1)求炮的最大射程;

(2)設在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求的單調區(qū)間;

(2)若有最大值,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的左右焦點分別為 ,離心率為,點在橢圓上, ,過與坐標軸不垂直的直線與橢圓交于, 兩點, , 的中點.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知點,且,求直線所在的直線方程.

查看答案和解析>>

同步練習冊答案