若方程2|x|=9-x2 在區(qū)間(k,k+1)(k∈Z)上有解,則所有滿足條件的實數(shù)k值的和為
 
考點:根的存在性及根的個數(shù)判斷
專題:計算題,作圖題,函數(shù)的性質(zhì)及應用
分析:將方程的根化為f(x)=2|x|與g(x)=9-x2在區(qū)間(k,k+1)(k∈Z)上有交點,作出圖象,由圖可得k的值.
解答: 解:方程2|x|=9-x2 在區(qū)間(k,k+1)(k∈Z)上有解可化為:
f(x)=2|x|與g(x)=9-x2在區(qū)間(k,k+1)(k∈Z)上有交點,
作兩個函數(shù)的簡圖如下:

則它們的交點在區(qū)間(-3,-2),(2,3)之間,
故k=-3,2;
故答案為:-1.
點評:本題考查了方程的解與函數(shù)的零點之間的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

拋物線將坐標平面分成兩部分,我們將焦點所在的部分(不包括拋物線本身)稱為拋物線的內(nèi)部.若點N(a,b)在拋物線C:y2=2px(p>0)的內(nèi)部,則直線l:by=p(x+a)與拋物線C的公共點的個數(shù)為( 。
A、0B、1C、2D、不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差d≠0,它的前n項和為Sn,若S5=70,且a2,a7,a22成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{
1
Sn
}
的前n項和為Tn,求證:Tn
3
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-x2,x∈[-2,1],單調(diào)遞減區(qū)間為
 
,最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=-
1
3
x3+
1
2
x2+2ax.
(1)若f(x)在(
2
3
,+∞)上是單調(diào)減函數(shù),求實數(shù)a的取值范圍.
(2)當0<a<2時,f(x)在[1,4]上的最小值為-
16
3
,求f(x)在該區(qū)間的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2x|log
1
2
x
|-1的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
lnx
x
-x+c≤0對任意x>0恒成立,則c的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)a,b,c組成等差數(shù)列,且公差不為零,那么由它們的倒數(shù)所組成的數(shù)列
1
a
1
b
,
1
c
能否成為等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、240
B、200
C、
580
3
D、
560
3

查看答案和解析>>

同步練習冊答案