20.函數(shù)$f(x)=sin(4x+\frac{π}{6})$的最小正周期為$\frac{π}{2}$.

分析 直接利用周期公式求解即可.

解答 解:函數(shù)$f(x)=sin(4x+\frac{π}{6})$,
∴f(x)的最小正周期T=$\frac{2π}{4}=\frac{π}{2}$.
故答案為$\frac{π}{2}$.

點(diǎn)評(píng) 本題給出正弦型三角函數(shù)的周期的計(jì)算.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)a,b∈R,若a>b,則( 。
A.$\frac{1}{a}<\frac{1}$B.lga>lgbC.2a>2bD.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于300mm的為“長(zhǎng)纖維”,其余為“短纖維”)
纖維長(zhǎng)度(0,100)[100,200)[200,300)[300,400)[400,500]
甲地(根數(shù))34454
乙地(根數(shù))112106
(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.025的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.
甲地乙地總計(jì)
長(zhǎng)纖維91625
短纖維11415
總計(jì)202040
附:(1)${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;
(2)臨界值表;
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(2)現(xiàn)從上述40根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢
測(cè),在這8根纖維中,記乙地“短
纖維”的根數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個(gè)焦點(diǎn),點(diǎn)F1到雙曲線漸近線的距離為$\frac{\sqrt{2}}{2}$|OF1|(O為坐標(biāo)原點(diǎn)),則該雙曲線的離心率為( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若復(fù)數(shù)z滿足$2z+z•\overline z={({2-i})^2}$(i為虛數(shù)單位),則z為( 。
A.-1-2iB.-1-iC.-1+2iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(2,n).
(1)若m=3,n=-1,且$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow$),求實(shí)數(shù)λ的值;
(2)若|$\overrightarrow{a}$+$\overrightarrow$|=5,求$\overrightarrow{a}$•$\overrightarrow$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若($\sqrt{x}$-$\frac{\sqrt{a}}{x}$)6的展開(kāi)式中的常數(shù)項(xiàng)為60,則a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知數(shù)列{an}的通項(xiàng)公式是an=$\frac{{2}^{n}-1}{{2}^{n}}$,其前n項(xiàng)和Sn=$\frac{321}{64}$,則項(xiàng)數(shù)n的值等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合A={x|x<1或x>2},B={x|3x-4>0},則A∩B=( 。
A.(-$\frac{4}{3}$,1)B.($\frac{4}{3}$,2)C.(1,$\frac{4}{3}$)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案