如圖,圖1中以陰影部分(含邊界)的點為元素所組成的集合用描述法表示為{(x,y)|0≤x≤1,0≤y≤2},則圖2中以陰影部分(不含外邊界但包含坐標軸)的點為元素所組成的集合:
 
考點:終邊相同的角
專題:集合
分析:利用圖中的陰影部分的點的坐標滿足的條件即為集合的元素的公共屬性.
解答: 解:圖中的陰影部分的點設為(x,y)則
{x,y)|-1<x≤0,-1<y≤0,或0≤x<3,0≤y<2}
={(x,y)|xy≥0且-1<x<3,-1<y<2},
故答案為:{(x,y)|xy≥0且-1<x<3,-1<y<2}
點評:本題考查用集合表示平面圖形,注意代表元素是數(shù)對.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC三個內角A,B,C的對邊分別為a,b,c,且滿足2bcosC+c=2a
(Ⅰ)求B;
(Ⅱ)若a=2,且sin(2A+
π
6
)+cos2A=
3
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α,β和直線m,給出以下條件:①m∥α;②m⊥α;③m?α;④α∥β.要使m⊥β,則所滿足的條件是
 
. (填所選條件的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程
已知直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù)),曲線C的參數(shù)方程為
x=4cosθ
y=2
3
sinθ
(θ為參數(shù)),設直線l與曲線C交于A、B兩點.
(1)求直線l與曲線C的普通方程;
(2)設P(2,0),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,若直線l的極坐標系,若直線l的極坐標方程為ρcosθ=1,圓C的參數(shù)方程為:
x=2+2cosφ
y=2sinφ
(φ為參數(shù)),則圓心C到直線l的距離等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
sin(π+θ)-2sin(
π
2
+θ)
cos(
π
2
+θ)-sin(
π
2
-θ)
=3
,
(Ⅰ)求tanθ的值;
(Ⅱ)sin2θ+sinθcosθ-cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得
10
i=1
xi=80
,
10
i=1
yi
=20,
10
i=1
xiyi
=184,
10
i=1
x
2
i
=720.
1)求家庭的月儲蓄y關于月收入x的線性回歸方程
?
y
=
?
b
x+
?
a
;
2)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
(a<0),g(x)=2lnx+bx,且函數(shù)g(x)在x=1處的切線斜率為2.
(1)若對[1,+∞)內的一切實數(shù)x,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(2)當a=-1時,求最大的正整數(shù)k,使得對[e,3]內的任意k個實數(shù)x1、x2、…xk都有f(x1)+f(x2)+…+f(xk)≤16g(xk)成立;
(3)求證:ln(2n+1)<
n
2
+
n
i=1
6i+1
4i2-1
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐O-ABC中,OA=OB=OC=2,且∠BOC=45°,則三棱錐O-ABC體積的最大值是
 

查看答案和解析>>

同步練習冊答案