設(shè)m,n是不同的直線,α,β是不同的平面


  1. A.
    若m∥α,n⊥β且α⊥β,則m⊥n
  2. B.
    若m∥α,n∥β且α⊥β,則m⊥n
  3. C.
    若m⊥α,n∥β且α∥β,則m∥n
  4. D.
    若m⊥α,n⊥β且α∥β,則m∥n
D
分析:結(jié)合圖形,根據(jù)空間中線面關(guān)系的判定及性質(zhì)定理對(duì)四個(gè)結(jié)論逐一進(jìn)行判斷.若m⊥α,n?β,m⊥n時(shí),α、β可能平行,也可能相交,不一定垂直;若α⊥β,m⊥α,n∥β時(shí),m與n可能平行、相交或異面,不一定垂直,α⊥β,α∩β=m時(shí),與線面垂直的判定定理比較缺少條件n?α,則n⊥β不一定成立.
解答:解:A:m∥α,n⊥β且α⊥β,m,n也可能平行,不一定垂直,故A不正確,如圖A.
B:m∥α,n∥β且α⊥β,則m與n可能是異面直線,故B也不一定成立,如圖B.
C:m⊥α,n∥β且α∥β,m與n一定垂直,故C錯(cuò)誤.如圖C.
D:α∥β,m⊥α,n∥β時(shí),m與n一定垂直,故D正確,如圖C.
故選D.
點(diǎn)評(píng):判斷或證明線面平行的常用方法有:①利用線面平行的定義(無(wú)公共點(diǎn));②利用線面平行的判定定理(a?α,b?α,a∥b?a∥α);③利用面面平行的性質(zhì)定理(α∥β,a?α?a∥β);④利用面面平行的性質(zhì)(α∥β,a?α,a?,a∥α??a∥β).線線垂直可由線面垂直的性質(zhì)推得,直線和平面垂直,這條直線就垂直于平面內(nèi)所有直線,這是尋找線線垂直的重要依據(jù).垂直問(wèn)題的證明,其一般規(guī)律是“由已知想性質(zhì),由求證想判定”,也就是說(shuō),根據(jù)已知條件去思考有關(guān)的性質(zhì)定理;根據(jù)要求證的結(jié)論去思考有關(guān)的判定定理,往往需要將分析與綜合的思路結(jié)合起來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個(gè)命題:①若α∥β,α∥γ,則β∥γ②若α⊥β,m∥α,則m⊥β③若m⊥α,m∥β,則α⊥β④若m∥n,?n?α,則m∥α其中真命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、設(shè)m,n是不同的直線,是不同的平面,則下列四個(gè)命題:①若α∥β,m?α,則m∥β,②若m∥α,n?α,則m∥n,③若α⊥β,m∥α,則m⊥β,④若m⊥α,m∥β,則α⊥β
其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個(gè)命題:
(1)若n∥α,m∥β,α∥β,則n∥m;   (2)若m⊥α,n∥α,則m⊥n
(3)若α⊥γ,β⊥γ,則α∥β;         (4)若α∥β,β∥γ,m⊥α,則m⊥γ
其中真命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個(gè)命題:
(1)
α∥β
α∥γ
?β∥γ
;
(2)
α⊥β
m∥α
?m⊥β

(3)
m⊥α
m∥β
?α⊥β
;
(4)
m∥n
n?α
?m∥α

其中,假命題是(  )
A、(1)(2)
B、(2)(3)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m、n是不同的直線,α、β是不同的平面,有以下四個(gè)命題:
①若m⊥α,n⊥α,則m∥n; 
②若α⊥β,m∥α,則m⊥β;
③若m上α,m⊥n,則n∥α;    
④若n⊥α,n⊥β,則β∥α.
其中,真命題的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案