12.如圖,矩形ABCD中,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點,則在△ADE翻轉(zhuǎn)過程中,下列說法正確的是①②.(填序號)
①MB∥平面A1DE;
②|BM|是定值;
③A1C⊥DE.

分析 取CD中點F,連接MF,BF,則平面MBF∥平面A1DE,可得①正確;由余弦定理可得MB2=MN2+NB2-2MN•NB•cos∠MNB,所以MB是定值,可得②正確,A1C在平面ABCD中的射影為AC,AC與DE不垂直,可得③不正確.

解答 解:取CD中點F,連接MF,BF,則MF∥DA1,BF∥DE,
∴平面MBF∥平面A1DE,
∴MB∥平面A1DE,
故①正確.
由∠A1DE=∠MNB,MN=$\frac{1}{2}$A1D=定值,NB=DE=定值,
由余弦定理可得MB2=MN2+NB2-2MN•NB•cos∠MNB,
所以MB是定值,故②正確.
∵A1C在平面ABCD中的射影為AC,AC與DE不垂直,
∴故③不正確.
故答案為:①②.

點評 本題主要考查了直線與平面平行的判定,考查了空間想象能力和推理論證能力,掌握線面、面面平行與垂直的判定和性質(zhì)定理及線面角、二面角的定義及求法是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=lg(2x-3)的定義域為集合M,函數(shù)g(x)=$\frac{\sqrt{x-3}}{\sqrt{x-1}}$的定義域為集合N.求:
(1)集合M,N;
(2)集合M∪N,∁RN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知x>0,y>0,2x+y=2,則xy的最大值為(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=$\left\{\begin{array}{l}{x-4,(x≥6)}\\{f(x+2),(x<6)}\end{array}\right.$,則f(3)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知正數(shù)x,y滿足x+y-xy=0,則3x+2y的最小值為5+2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正項等比數(shù)列{an}的前n項積為πn,已知am-1•am+1=2am,π2m-1=2048,則m=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)$z=\frac{2}{1+i}$的虛部( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(Ⅰ)已知x2+y2=1,求2x+3y的取值范圍;
(Ⅱ)已知a2+b2+c2-2a-2b-2c=0,求證:$2a-b-c≤3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知p:|3x-4|>2,$q:\frac{1}{{{x^2}-x-2}}>0$求¬p是¬q的什么條件.

查看答案和解析>>

同步練習(xí)冊答案