求函數(shù)f(x)=
32
x2+2x-lnx
單調(diào)區(qū)間與極值.
分析:確定函數(shù)的定義域,求導(dǎo)函數(shù),利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間,從而可得函數(shù)的極值.
解答:解:由題可知,函數(shù)f(x)的定義域?yàn)椋?,+∞)
f′(x)=3x+2-
1
x
=
(x+1)(3x-1)
x

令f′(x)>0得x<-1或x>
1
3
;令f′(x)<0得-1<x<
1
3

∵x∈(0,+∞)
∴函數(shù)的單調(diào)遞增區(qū)間為(
1
3
,+∞),單調(diào)遞減區(qū)間為(0,
1
3

∴f(x)在x=
1
3
處取得極小值
5
6
+ln3
,無極大值.
點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的單調(diào)性與極值,正確求導(dǎo)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求值:(2
1
4
)
1
2
-(2011)0-(3
3
8
)-
2
3
+(
3
2
)-2
.(2)求函數(shù)f(x)=
(x+1)0
|x|-x
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=3
2-x
+4
2+x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
-3sin2x+
3
sinxcosx,x∈R

(1)求函數(shù)f(x)的最小正周期及圖象的對稱中心;
(2)試求滿足不等式f(x)≥
3
2
的自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
2
-
3
sin2ωx-sinωxcosωx(ω>0)
,且y=f(x)的圖象的一個對稱中心到最近的對稱軸的距離為
π
4

(l)求ω的值;
(2)將函數(shù)y=f(x)圖象向左平移
π
3
個單位,得到函數(shù)y=g(x)的圖象,求y=g(x)在區(qū)間[0,
π
2
]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx, 
3
2
), 
b
=(cosx, -1)

(1)求函數(shù)f(x)=(
a
+
b
)•
b
的最小正周期及值域;
(2)求函數(shù)f(x)=(
a
+
b
)•
b
[-
π
2
, 0]
上的值域.

查看答案和解析>>

同步練習(xí)冊答案