7.復(fù)數(shù)z滿足$\frac{1+i}{z}=\frac{i}{1+2i}(i$為虛數(shù)單位),則z=( 。
A.3+iB.3-iC.-3+iD.-3-i

分析 根據(jù)復(fù)數(shù)的運算性質(zhì)化簡即可.

解答 解:由題意得:
z=$\frac{(1+i)(1+2i)}{i}$
=$\frac{1+3i-2}{i}$
=$\frac{(-1+3i)i}{i•i}$
=$\frac{-3-i}{-1}$
=3+i,
故選:A.

點評 本題考查了復(fù)數(shù)的運算,考查復(fù)數(shù)的化簡問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個封閉的正三棱柱容器,高為8,內(nèi)裝水若干(如圖甲,底面處于水平狀態(tài)).將容器放倒(如圖乙,一個側(cè)面處于水平狀態(tài)),這時水面所在的平面與各棱交點E,F(xiàn),F(xiàn)1,E1分別為所在棱的中點,則圖甲中水面的高度為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ
(Ⅰ)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)已知曲線C3的極坐標(biāo)方程為θ=α,0<α<π,ρ∈R,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4$\sqrt{2}$,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的兩個焦點,M(x0,y0)(x0>0,y0>0)是雙曲線的漸近線上一點,滿足MF1⊥MF2,如果以F2為焦點的拋物線y2=2px(p>0)經(jīng)過點M,則此雙曲線的離心率為(  )
A.$2+\sqrt{3}$B.$2-\sqrt{3}$C.$2+\sqrt{5}$D.$\sqrt{5}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合M={(x,y)||x|+|y|≤1},若實數(shù)對(λ,μ)滿足:對任意的(x,y)∈M,都有(λx,μy)∈M,則稱(λ,μ)是集合M的“嵌入實數(shù)對”.則以下集合中,不存在集合M的“嵌入實數(shù)對”的是( 。
A.{(λ,μ)|λ-μ=2}B.{(λ,μ)|λ+μ=2}C.{(λ,μ)|λ22=2}D.{(λ,μ)|λ22=2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某高校大一新生的五名同學(xué)打算參加學(xué)校組織的“小草文學(xué)社”、“街舞俱樂部”、“足球之家”、“騎行者”四個社團.若毎個社團至少一名同學(xué)參加,每名同學(xué)至少參加一個社團且只能參加一個社團,其中同學(xué)甲不參加“街舞俱樂部”,則這五名同學(xué)不同的參加方法的種數(shù)為( 。
A.160B.180C.200D.220

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.2月21日教育部舉行新聞發(fā)布會,介紹2017年全國靑少年校園足球工作計劃,提出將著力提高校園足球特色學(xué)校的建設(shè)質(zhì)量和水平,爭取提前完成建設(shè)2萬所校園足球特色學(xué)校,到2025年校園足球特色學(xué)校將達到5萬所.為了調(diào)查學(xué)生喜歡足球是否與性別有關(guān),從某足球特色學(xué)校抽取了50名同學(xué)進行調(diào)查,得到以下數(shù)據(jù)(單位:人):
喜愛不喜愛合計
男同學(xué)24630
女同學(xué)61420
合計302050
(1)能否在犯錯概率不超過0.001的前提下認(rèn)為喜愛足球與性別有關(guān)?
(2)現(xiàn)從30個喜愛足球的同學(xué)中按分層抽樣的方法抽出5人,再從里面任意選出2人對其訓(xùn)練情況進行全程跟蹤調(diào)查,求選出的剛好是一男一女的概率.
附表及公式:
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,已知底面ABCD是正方形的四棱柱ABCD-A1B1C1D1,C1C=C1D,且∠C1CB=C1CD,線段AC與BD的交點為O.
(1)求證:C1O⊥平面ABCD;
(2)若C1O=CO,設(shè)點E在線段AD上,且滿足$\overrightarrow{AE}$=λ$\overrightarrow{ED}$,當(dāng)λ為何值時,二面角D1-OE-A的余弦值為$\frac{\sqrt{6}}{6}$?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)是定義在R上的函數(shù),且滿足①f(4)=0;②曲線y=f(x+1)關(guān)于點(-1,0)對稱;③當(dāng)x∈(-4,0)時f(x)=log2($\frac{x}{{e}^{|x|}}$+ex-m+1),若y=f(x)在x∈[-4,4]上有5個零點,則實數(shù)m的取值范圍為( 。
A.[-3e-4,1)B.[-3e-4,1)∪{-e-2}C.[0,1)∪{-e-2}D.[0,1)

查看答案和解析>>

同步練習(xí)冊答案