等差數(shù)列滿足:,且前項和,則的最小值為________.
由已知,所以,,
由等差數(shù)列的性質(zhì)得,
所以=
當且僅當時,的最小值為.
【考點定位】本題考查等差數(shù)列的性質(zhì)、等差數(shù)列的求和公式及基本不等式等知識,意在考查考生的計算能力及應用數(shù)學知識解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(2011•重慶)設實數(shù)數(shù)列{an}的前n項和Sn滿足Sn+1=an+1Sn(n∈N*).
(1)若a1,S2,﹣2a2成等比數(shù)列,求S2和a3
(2)求證:對k≥3有0≤ak

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

關于數(shù)列有下列四個判斷:
①若成等比數(shù)列,則也成等比數(shù)列;②若數(shù)列{}既是等差數(shù)列也是等比數(shù)列,則{}為常數(shù)列;③數(shù)列{}的前n項和為,且,則{}為等差或等比數(shù)列;④數(shù)列{}為等差數(shù)列,且公差不為零,則數(shù)列{}中不會有,其中正確判斷的序號是______.(注:把你認為正確判斷的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(2014·重慶模擬)已知等差數(shù)列{an}滿足a2+a4=4,a3+a5=10,則它的前6項的和S6=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

“點Pn(n,an)(n∈N*)都在直線y=x+1上”是“數(shù)列{an}為等差數(shù)列”的(  )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

=22+λ+3(其中λ為實常數(shù)),∈N*,且數(shù)列{}為單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=anbn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

假設你有一筆資金用于投資,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:
方案一:每天回報40元;
方案二:第一天回報10元,以后每天的回報比前一天多回報10元;
方案三:第一天回報0.4元,以后每天的回報是前一天的兩倍.
若投資的時間為天,為使投資的回報最多,你會選擇哪種方案投資?(   )
A.方案一B.方案二C.方案三D.都可以

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列{}的通項公式為,那么是它的第_       __項.

查看答案和解析>>

同步練習冊答案