8.設(shè)(1+3i)(2a+i)的實(shí)部與虛部相等,其中a為實(shí)數(shù),則a=( 。
A.-1B.-2C.2D.1

分析 由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)(1+3i)(2a+i),再結(jié)合已知條件列出方程,求解即可得答案.

解答 解:∵(1+3i)(2a+i)=2a-3+(1+6a)i的實(shí)部與虛部相等,
∴2a-3=1+6a,解得a=-1.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=0.5${\;}^{\frac{1}{3}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{3}}$,c=log2.51.5,則a,b,c的大小關(guān)系( 。
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為( 。
A.$4\sqrt{3}+1$B.$4\sqrt{3}$C.$24+2\sqrt{3}+\sqrt{15}$D.$24+3\sqrt{3}+\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若$0<α<\frac{π}{2},\;0<β<\frac{π}{2}$,且$tanα=\frac{1}{7},\;\;tanβ=\frac{3}{4}$,則α+β的值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為${S_n}={2^n}+a$(a為常數(shù),n∈N*).
(1)求a1,a2,a3
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)a的值及an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.圓(x-3)2+(y-3)2=4上到直線3x+4y-16=0的距離等于1的點(diǎn)有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.從某小區(qū)隨機(jī)抽取40個(gè)家庭,收集了這40個(gè)家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.
分組頻數(shù)
[2,4)2
[4,6)10
[6,8)16
[8,10)8
[10,12]4
合計(jì)40
(1)求頻率分布直方圖中a,b的值;
(2)從該小區(qū)隨機(jī)選取一個(gè)家庭,試估計(jì)這個(gè)家庭去年的月均用水量不低于6噸的概率;
(3)在這40個(gè)家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個(gè)容量為7的樣本,將該樣本看成一個(gè)總體,從中任意選取2個(gè)家庭,求其中恰有一個(gè)家庭的月均用水量不低于8噸的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=2,|$\overrightarrow{a}$|=2|$\overrightarrow$-$\overrightarrow{a}$|,則|$\overrightarrow{a}$|的取值范圍是[$\frac{4}{3},4$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若A${\;}_{m}^{5}$=2A${\;}_{m}^{3}$,則m的值為( 。
A.5B.3C.6D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案