【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足 . (Ⅰ)求角C的值;
(Ⅱ)若a=5,△ABC的面積為 ,求sinB的值.
【答案】解:(Ⅰ)由正弦定理, , 可整理變形為: ,
由A=π﹣(B+C),可得:sinA=sin(B+C)
所以: ,
整理得: ,
因為sinB≠0,
所以 ,可得: ,
∴ ,
∴ .
(Ⅱ)由已知a=5, ,得 ,
由余弦定理得c2=a2+b2﹣2abcosC=21,故 ,
可得:
【解析】(Ⅰ)由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式可得 ,結(jié)合sinB≠0,可得: ,進而可求C的值.(Ⅱ)由已知利用三角形面積公式可求b,由余弦定理得c,進而利用正弦定理可求sinB的值.
【考點精析】利用正弦定理的定義和余弦定理的定義對題目進行判斷即可得到答案,需要熟知正弦定理:;余弦定理:;;.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的程序框圖運行程序后,輸出的結(jié)果是31,則判斷框中的整數(shù)H=( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos( ﹣x)cos(x+ )+ . (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= ,若函數(shù)f(x)有四個零點,則實數(shù)a的取值范圍是( )
A.(﹣∞,﹣e)
B.(﹣∞,﹣ )
C.(﹣∞,﹣ )
D.(﹣∞,﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣axlnx(a∈R)在x=1處的切線方程為y=bx+1+ (b∈R).
(1)求a,b的值;
(2)證明:f(x)< .
(3)若正實數(shù)m,n滿足mn=1,證明: + <2(m+n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的離心率為 ,F(xiàn)1 , F2分別為橢圓的左右焦點,P為橢圓上任意一點,△PF1F2的周長為 ,直線l:y=kx+m(k≠0)與橢圓C相交于A,B兩點. (Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l與圓x2+y2=1相切,過橢圓C的右焦點F2作垂直于x軸的直線,與橢圓相交于M,N兩點,與線段AB相交于一點(與A,B不重合).求四邊形MANB面積的最大值及取得最大值時直線l的方程;
(Ⅲ)若|AB|=2,試判斷直線l與圓x2+y2=1的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次購物抽獎活動中,假設(shè)某10張券中有一等獎券1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有獎,某顧客從此10張券中任抽2張,求:
(Ⅰ)該顧客中獎的概率;
(Ⅱ)該顧客獲得的獎品總價值ξ(元)的概率分布列和期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=mln(x+1),g(x)= (x>﹣1).
(Ⅰ)討論函數(shù)F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調(diào)性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2為雙曲線的焦點,過F2垂直于實軸的直線交雙曲線于A、B兩點,BF1交y軸于點C,若AC⊥BF1 , 則雙曲線的離心率為( )
A.
B.
C.2
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com