15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)為A,若雙曲線右支上存在兩點(diǎn)B,C使得△ABC為等腰直角三角形,則該雙曲線的離心率e的取值范圍是( 。
A.(1,2)B.(2,+∞)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

分析 設(shè)其中一條漸近線與x軸的夾角為θ,由已知條件得tanθ<1,漸近線的方程為y=$\frac{a}$x,從而$\frac{a}$<1由此能求出該雙曲線的離心率e的取值范圍.

解答 解:如圖,由△ABC為等腰直角三角形,所以∠BAx=45°,
設(shè)其中一條漸近線與x軸的夾角為θ,則θ<45°,即tanθ<1,
又上述漸近線的方程為y=$\frac{a}$x,
則$\frac{a}$<1,又e=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$,
∴1<e<$\sqrt{2}$,
雙曲線的離心率e的取值范圍(1,$\sqrt{2}$),
故選C.

點(diǎn)評(píng) 本題考查雙曲線的離心率的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意雙曲線的性質(zhì)的合理運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知i是虛數(shù)單位,復(fù)數(shù)z=(4+i)+(-3-2i)的虛部是( 。
A.1B.$\sqrt{2}$C.-1D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在正方體ABCD-A1B1C1D1中,M,N分別為BC,BB1的中點(diǎn),求AB與平面AMN所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在四面體P-ABC中,PA=PB=PC=BC=1,則該四面體體積的最大值為$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x∈R||x|≤2},B={x∈Z|x2≤1},則A∩B=( 。
A.[-1,1]B.[-2,2]C.{-1,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.從某地高中男生中隨機(jī)抽取100名同學(xué),將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖),由直方圖可知( 。
A.估計(jì)體重的眾數(shù)為50或60
B.a=0.03
C.學(xué)生體重在[50,60)有35人
D.從這100名男生中隨機(jī)抽取一人,體重在[60,80)的概率為$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=sin(2x+φ)($|φ|<\frac{π}{2}$)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位后關(guān)于y軸對(duì)稱,則函數(shù)f(x)的一條對(duì)稱軸是( 。
A.$x=\frac{π}{12}$B.$x=-\frac{π}{3}$C.$x=-\frac{π}{6}$D.$x=\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖所示,某貨場(chǎng)有兩堆集裝箱,一堆2個(gè),一堆3個(gè),現(xiàn)需要全部裝運(yùn),每次只能從其中一堆取最上面的一個(gè)集裝箱,則在裝運(yùn)的過(guò)程中不同取法的種數(shù)是( 。
A.6B.10C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若$\int_{-a}^a{({{x^2}+sinx})dx}=18$,則a=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案