2.如圖,在平面四邊形ABCD中,已知∠A=$\frac{π}{2}$,∠B=$\frac{2π}{3}$,AB=6,在AB邊上取點(diǎn)E,使得BE=1,連接EC,ED.若∠CED=$\frac{2π}{3}$,EC=$\sqrt{7}$.
(Ⅰ)求sin∠BCE的值;
(Ⅱ)求CD的長.

分析 (Ⅰ)在△CBE中,正弦定理求出sin∠BCE;
(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2-2BE•CBcos120°,得CB.由余弦定理得CB2=BE2+CE2-2BE•CEcos∠BEC⇒cos∠BEC⇒sin∠BEC、cos∠AED在直角△ADE中,求得DE=2$\sqrt{7}$,在△CED中,由余弦定理得CD2=CE2+DE2-2CE•DEcos120°即可

解答 解:(Ⅰ)在△CBE中,由正弦定理得$\frac{CE}{sinB}=\frac{BE}{sin∠BCE}$,sin∠BCE=$\frac{BEsinB}{CE}=\frac{1×\frac{\sqrt{3}}{2}}{\sqrt{7}}=\frac{\sqrt{21}}{14}$,
(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2-2BE•CBcos120°,即7=1+CB2+CB,解得CB=2.
由余弦定理得CB2=BE2+CE2-2BE•CEcos∠BEC⇒cos∠BEC=$\frac{2\sqrt{7}}{7}$.⇒sin∠BEC=$\frac{\sqrt{21}}{7}$,
sin∠AED=sin(1200+∠BEC)=$\frac{\sqrt{3}}{2}×\frac{2\sqrt{7}}{7}-\frac{1}{2}×\frac{\sqrt{21}}{7}=\frac{\sqrt{21}}{14}$,⇒cos∠AED=$\frac{5\sqrt{7}}{14}$,
在直角△ADE中,AE=5,$\frac{AE}{DE}$═cos∠AED=$\frac{5\sqrt{7}}{14}$,⇒DE=2$\sqrt{7}$,
在△CED中,由余弦定理得CD2=CE2+DE2-2CE•DEcos120°=49
∴CD=7.

點(diǎn)評 本題考查了正余弦定理在解三角形中的應(yīng)用,是中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\frac{sinα-cosα}{2sinα+3cosα}$=$\frac{1}{5}$,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若M={x|-2≤x≤2},N={x|y=log2(x-1)},則M∩N=(  )
A.{x|-2≤x<0}B.{x|-1<x<0}C.{-2,0}D.{x|1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若2a3=3+a1,則S9的值為( 。
A.15B.27C.30D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某羽絨服賣場為了解氣溫對營業(yè)額的影響,營業(yè)員小孫隨機(jī)記錄了該店3月份上旬中某5天的日營業(yè)額y(單元:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x258911
y1210887
(1)求y關(guān)于x的回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)若天氣預(yù)報(bào)明天的最低氣溫為10℃,用所求回歸方程預(yù)測該店明天的營業(yè)額;
(3)設(shè)該地3月份的日最低氣溫X~N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差,求P(0.6<X<3.8).
附:(1)回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,22+52+82+92+112=295,2×12+5×10+8×8+9×8+11×7=287,
(2)$\sqrt{10}≈3.2$;若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2σ)=0.9545.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一個幾何體的三視圖如圖所示,則此幾何體的體積為( 。
A.16B.36C.48D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,邊長為2的正方形ABCD中,點(diǎn)E、點(diǎn)F分別是AB、BC上的點(diǎn),且BE=BF,將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A1
(Ⅰ)若點(diǎn)E是邊AB的中點(diǎn),求證:A1D⊥EF;
(Ⅱ)當(dāng)$BE=\frac{1}{2}$時,求三棱錐A1-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列選項(xiàng)中說法正確的是( 。
A.命題“p∨q為真”是命題“p∧q為真”的必要條件
B.向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}•\overrightarrow>0$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角
C.若am2≤bm2,則a≤b
D.“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在△ABC中,E,F(xiàn)分別是邊BC,AC上的點(diǎn),且△ABE是邊長為3的正三角形,EF∥AB,EF=1,則sinC等于( 。
A.$\frac{{\sqrt{7}}}{14}$B.$\frac{{\sqrt{7}}}{7}$C.$\frac{{\sqrt{21}}}{14}$D.$\frac{{\sqrt{21}}}{7}$

查看答案和解析>>

同步練習(xí)冊答案