9.某幾何體的三視圖如圖,則該幾何體的體積是( 。
A.4B.$\frac{4}{3}$C.$\frac{8}{3}$D.2

分析 根據(jù)三視圖,得直觀圖是三棱錐,底面積為$\frac{1}{2}×2×2\sqrt{2}$=2$\sqrt{2}$,高為$\sqrt{2}$,即可求出它的體積.

解答 解:根據(jù)三視圖,得直觀圖是三棱錐,底面積為$\frac{1}{2}×2×2\sqrt{2}$=2$\sqrt{2}$,高為$\sqrt{2}$;
所以,該棱錐的體積為V=$\frac{1}{3}$S底面積•h=$\frac{1}{3}$×2$\sqrt{2}×\sqrt{2}$=$\frac{4}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了利用三視圖求體積的應(yīng)用問題,解題的關(guān)鍵是根據(jù)三視圖得出幾何體的結(jié)構(gòu)特征,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=$\sqrt{x-1}$的定義域是( 。
A.(0,+∞)B.(1,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=xex-x-2的零點(diǎn)的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.不共線向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}|$,且$\overrightarrow a⊥({\overrightarrow a-2\overrightarrow b})$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{1}{e}•{e^x}+\frac{a}{2}{x^2}$-(a+1)x+a(a>0),其中e為自然對(duì)數(shù)的底數(shù).若函數(shù)y=f(x)與y=f[f(x)]有相同的值域,則實(shí)數(shù)a的最大值為(  )
A.eB.2C.1D.$\frac{e}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為保障春節(jié)期間的食品安全,某市質(zhì)量監(jiān)督局對(duì)超市進(jìn)行食品檢查,如圖所示是某品牌食品中微量元素含量數(shù)據(jù)的莖葉圖,已知該組數(shù)據(jù)的平均數(shù)為11.75,則$\frac{4}{a}+\frac{1}$的最小值為( 。
A.9B.$\frac{9}{2}$C.3D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={-1,0,1,2},集合B={y|y=2x-3,x∈A},則A∩B中元素的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿足:-a3,a2,a4成等差數(shù)列.
(1)若a1=1,求{an}的前n項(xiàng)和Sn
(2)若bn=log2a2n+1,且數(shù)列{bn}的前n項(xiàng)和Tn=n2+3n,求a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.(x-y)(x+2y+z)6的展開式中,x2y3z2的系數(shù)為( 。
A.-30B.120C.240D.420

查看答案和解析>>

同步練習(xí)冊(cè)答案