20.函數(shù)f(x)=xex-x-2的零點(diǎn)的個數(shù)為(  )
A.0B.1C.2D.3

分析 求出函數(shù)的導(dǎo)數(shù),得到函數(shù)f(x)的單調(diào)區(qū)間,從而求出函數(shù)的零點(diǎn)個數(shù)即可.

解答 解:f′(x)=(x+1)ex-1,
f″(x)=(x+2)ex,
令f″(x)>0,解得:x>-2,
令f″(x)<0,解得:x<-2,
故f′(x)在(-∞,-2)遞減,在(-2,+∞)遞增,
故f′(x)min=f′(-2)=-$\frac{1}{{e}^{2}}$-1<0,
而f′(0)=0,x→-∞時,f′(x)→-∞,
故x<0時,f′(x)<0,f(x)遞減,
x>0時,f′(x)>0,f(x)遞增,
故f(x)的最小值是f(0)=-2,
故函數(shù)f(x)的零點(diǎn)個數(shù)是2個,
故選:C.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的零點(diǎn)問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,平面ABEF⊥平面CBED,四邊形ABEF為直角三角形,∠AFE=∠FEB=90°,四邊形CBED為等腰梯形,CD∥BE,且BE=2AF=2CD=2BC=2EF=4.
(Ⅰ)若梯形CBED內(nèi)有一點(diǎn)G,使得FG∥平面ABC,求點(diǎn)G的軌跡;
(Ⅱ)求多面體ABCDEF體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列語句為命題的是( 。
A.lg100=2B.20172017是一個大數(shù)
C.三角函數(shù)的圖象真漂亮!D.指數(shù)函數(shù)是遞增函數(shù)嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\frac{{x}^{2}+2x}{{e}^{x}}$,f′(x)為f(x)的導(dǎo)函數(shù),則f′(0)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a,b∈R,i是虛數(shù)單位,若復(fù)數(shù)$\frac{2+bi}{1-i}$=ai,則a+b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足$\sqrt{3}$cos2A+1=4sin($\frac{π}{6}$+A)•sin($\frac{π}{3}$-A)
(Ⅰ)求角A的值;
(Ⅱ)若a=$\sqrt{2}$,且b≥a,求$\sqrt{2}$b-c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|2x-a|-|x-1|.
(1)當(dāng)a=1時,求f(x)的最小值;
(2)存在x∈[0,2]時,使得不等式f(x)≤0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖,則該幾何體的體積是(  )
A.4B.$\frac{4}{3}$C.$\frac{8}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2-(2a-1)x-lnx.
(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a<0時,求函數(shù)f(x)在$[{\frac{1}{2},1}]$上的最小值;
(3)記函數(shù)y=f(x)的圖象為曲線C,設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn),點(diǎn)M為線段AB的中點(diǎn),過點(diǎn)M作x軸的垂直交曲線C于點(diǎn)N,判斷曲線C在點(diǎn)N處的切線是否平行于直線AB,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案