16.利用行列式解關(guān)于x,y的二元一次方程組$\left\{\begin{array}{l}{mx+y=-1}\\{3mx-my=2m+3}\end{array}\right.$.

分析 先求出系數(shù)行列式D,Dx,Dy,然后討論m,從而確定二元一次方程解的情況.

解答 解:由題意得,D=$|\begin{array}{l}{m}&{1}\\{3m}&{-m}\end{array}|$=-m2-3m=-m(m+3),
${D}_{x}=|\begin{array}{l}{-1}&{1}\\{2m+3}&{-m}\end{array}|$=-m-3,${D}_{y}=|\begin{array}{l}{m}&{-1}\\{3m}&{2m+3}\end{array}|$=2m2+6m=2m(m+3),
(1)當(dāng)m≠0且m≠-3時(shí),D≠0,原方程組有唯一組解,
所以x=$\frac{1}{D}×{D}_{x}$=$\frac{1}{m}$,y=$\frac{1}{D}×{D}_{y}$=-2,
(2)當(dāng)m=0時(shí),D=0,Dx=-3≠0,原方程組無(wú)解;
(3)當(dāng)m=-3時(shí),D=0,Dx=0,Dy=0,原方程族有無(wú)窮組解.
綜上,當(dāng)m=0,無(wú)解;當(dāng)m=-3,無(wú)窮解;
當(dāng)m≠0且m≠-3,有唯一解,x=$\frac{1}{m}$、y=-2.

點(diǎn)評(píng) 本題考查二元一次方程組的矩陣形式的解法及應(yīng)用,解題時(shí)要注意系數(shù)矩陣的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若a,b是異面直線,直線c∥a,則c與b的位置關(guān)系是(  )
A.異面或相交B.相交C.異面D.平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)定義域?yàn)镽的函數(shù)f(x)=$\left\{{\begin{array}{l}{|{lg|x|}|,x≠0}\\{0,x=0}\end{array}}\right.\end{array}$,則當(dāng)a<0時(shí),方程f2(x)+af(x)=0的實(shí)數(shù)解的個(gè)數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知等比數(shù)列{an},a1=1,a4=-8,則S7=$\frac{128}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.直線x+$\sqrt{3}$y+2=0與直線x+1=0的夾角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若不等式ax2+(a+1)x+a<0對(duì)一切x∈R恒成立,則a的取值范圍是(-∞,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)F1,F(xiàn)2為橢圓C1:$\frac{x^2}{a^2}$+$\frac{y{\;}^{2}}{b^2}$=1(a>b>0)與雙曲線C2的公共的左、右焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,△MF1F2是以線段MF1為底邊的等腰三角形,若橢圓C1的離心率e∈[${\frac{3}{8}$,$\frac{4}{9}}$].則雙曲線C2的離心率的取值范圍是(  )
A.$[{\frac{3}{2},4}]$B.$[{\frac{3}{2},+∞})$C.(1,4]D.$[{\frac{5}{4},\frac{5}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an},滿足a1=1,a2=3,an+2=3an+1-2an,bn=an+1-an,
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算(字母為正數(shù))
(1)(4a2b${\;}^{\frac{2}{3}}$)(-2a${\;}^{\frac{1}{3}}$b${\;}^{-\frac{2}{3}}$)÷(-b${\;}^{-\frac{1}{2}}$);
(2)$\sqrt{6\frac{1}{4}}$-$\root{3}{3\frac{3}{8}}$-($\sqrt{2}$-1)0+(-1)2016+2-1

查看答案和解析>>

同步練習(xí)冊(cè)答案