20.已知函數(shù)f(x)=$\sqrt{{x}^{2}-ax+4}$在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍.

分析 根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系,即可得到結(jié)論.

解答 解:設(shè)t=g(x)=x2-ax+4,則函數(shù)y=$\sqrt{t}$為增函數(shù),
∵函數(shù)f(x)=$\sqrt{{x}^{2}-ax+4}$在[1,+∞)上為增函數(shù),
∴滿足t=g(x)=x2-ax+4在區(qū)間[1,+∞)上是增函數(shù),且g(1)≥0,
則$\frac{a}{2}$≤1且1-a+4≥0,
解得a≤2且a≤5,
即a≤2.

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)單調(diào)性的應(yīng)用,結(jié)合一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=$\sqrt{2}$cos(πx-$\frac{π}{6}$)的最小正周期是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某市政府為了實(shí)施政府績(jī)效管理、創(chuàng)新政府公共服務(wù)模式、提高公共服務(wù)效率.實(shí)施了“政府承諾,等你打分”民意調(diào)查活動(dòng),通過(guò)問(wèn)卷調(diào)查了學(xué)生、在職人員、退休人員共250人,統(tǒng)計(jì)結(jié)果表不幸被污損,如表:
學(xué)生在職人員退休人員
滿意78
不滿意512
若在所調(diào)查人員中隨機(jī)抽取1人,恰好抽到學(xué)生的概率為0.32.
(Ⅰ)求滿意學(xué)生的人數(shù);
(Ⅱ)現(xiàn)用分層抽樣的方法在所調(diào)查的人員中抽取25人,則在職人員應(yīng)抽取多少人?
(Ⅲ)若滿意的在職人員為77,則從問(wèn)卷調(diào)查中填寫不滿意的“學(xué)生和在職人員”中選出2人進(jìn)行訪談,求這2人中包含了兩類人員的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.半徑為2的扇形,它的周長(zhǎng)等于其所在圓的周長(zhǎng),則此扇形的面積為4(π-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)的分別選派3,1,2名運(yùn)動(dòng)員參加某次比賽,甲協(xié)會(huì)運(yùn)動(dòng)員編號(hào)分別為A1,A2,A3,乙協(xié)會(huì)編號(hào)為A4,丙協(xié)會(huì)編號(hào)分別為A5,A6,若從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.
(1)用所給編號(hào)列出所有可能抽取的結(jié)果;
(2)求丙協(xié)會(huì)至少有一名運(yùn)動(dòng)員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運(yùn)動(dòng)員來(lái)自同一協(xié)會(huì)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.7個(gè)人排成一列,其中甲、乙兩人相鄰且與丙不相鄰的方法種數(shù)是(  )
A.1200B.960C.720D.480

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足$\frac{_{1}}{3}$+$\frac{_{2}}{{3}^{2}}$+…+$\frac{_{n}}{{3}^{n}}$=an-1(n∈N*),求數(shù)列{nbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個(gè)零點(diǎn).則實(shí)數(shù)a的取值范圍是($\frac{ln2}{2}$,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.($\sqrt{x}$-$\frac{1}{\sqrt{x}}$)7展開(kāi)式中,系數(shù)最大項(xiàng)是第5項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案