已知橢圓經過點,離心率為,左右焦點分別為.

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,與以為直徑的圓交于兩點,且滿足,求直線的方程.
(1);(2).

試題分析:(1)由題意可得,解出,的值,即可求出橢圓的方程;
(2)由題意可得以為直徑的圓的方程為,利用點到直線的距離公式得:圓心到直線的距離,可得的取值范圍,利用弦長公式可得,設,把直線的方程與橢圓的方程聯(lián)立可得根與系數(shù)的關系,進而得到弦長,由,即可解得的值.
試題解析:(1)由題意可得
解得
橢圓的方程為
由題意可得以為直徑的圓的方程為
圓心到直線的距離為
,即,可得


聯(lián)立
整理得
可得:,



解方程得,且滿足
直線的方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓經過點,且兩焦點與短軸的兩個端點的連線構成一正方形.(12分)
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點,若線段的垂直平分線經過點,求
為原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,曲線由上半橢圓和部分拋物線連接而成,的公共點為,其中的離心率為.

(1)求的值;
(2)過點的直線分別交于(均異于點),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知橢圓E經過點A(2,3),對稱軸為坐標軸,焦點F1,F(xiàn)2在x軸上,離心率e=,斜率為2的直線l過點A(2,3).

(1)求橢圓E的方程;
(2)在橢圓E上是否存在關于直線l對稱的相異兩點?若存在,請找出;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設拋物線y=
1
4
x2
的焦點為F,M為拋物線上異于頂點的一點,且M在準線上的射影為點M′,則在△MM′F的重心、外心和垂心中,有可能仍在此拋物線上的有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一輛卡車高3m,寬1.6m,欲通過橫斷面為拋物線形的隧道,已知拱口AB的寬恰好為拱高CD的4倍,|AB|=am,,求能使卡車通過的a的最小整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設A(x1,y1).B(x2,y2)兩點在拋物線y=2x2上,l是AB的垂直平分線.
1)當且僅當x1+x2取何值時,直線l經過拋物線的焦點F?證明你的結論;
2)當直線l的斜率為2時,求l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過雙曲線的右頂點作軸的垂線與的一條漸近線相交于.若以的右焦點為圓心、半徑為4的圓經過,則雙曲線的方程為(  )
      B.    C.      D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓的右焦點為,點是橢圓上任意一點,圓是以為直徑的圓.
(1)若圓過原點,求圓的方程; 
(2)寫出一個定圓的方程,使得無論點在橢圓的什么位置,該定圓總與圓相切,請寫出你的探究過程.

查看答案和解析>>

同步練習冊答案