橢圓x2+4y2=4的焦點(diǎn)坐標(biāo)為
3
,0)
3
,0)
分析:利用橢圓的標(biāo)準(zhǔn)方程及其a,b,c的關(guān)系即可得出.
解答:解:橢圓x2+4y2=4化為
x2
4
+y2=1
,∴a2=4,b2=1,c2=a2-b2=3,解得c=
3

∴焦點(diǎn)坐標(biāo)為
3
,0)

故答案為
3
,0)
點(diǎn)評(píng):熟練掌握橢圓的標(biāo)準(zhǔn)方程及其a,b,c的關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓x2+4y2=4上的一個(gè)動(dòng)點(diǎn),求點(diǎn)P到直線x+2y-3
2
=0
距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是橢圓x2+4y2=4上的任意一點(diǎn),A(4,0),若M為線段PA中點(diǎn),則點(diǎn)M的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-2y+2=0與橢圓x2+4y2=4相交于A,B兩點(diǎn),則|AB|=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•濰坊三模)已知橢圓x2+4y2=4與雙曲線x2-2y2=a(a>0)的焦點(diǎn)重合,則該雙曲線的離心率等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓x2+4y2=4的右焦點(diǎn)F作直線l交橢圓于M、N兩點(diǎn),設(shè)|
MN
|=
3
2
;
(1)求直線l的斜率;
(2)設(shè)M、N在橢圓右準(zhǔn)線上的射影分別是M1、N1,求
MN
M1N1
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案