已知一個(gè)空間幾何體的三視圖如圖所示,其中正視圖、側(cè)視圖都是由半圓和矩形組成,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的體積是
 
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由已知中正視圖、側(cè)視圖都是由半圓和矩形組成,俯視圖為一個(gè)圓,可得該幾何體是由一個(gè)圓柱和半球組成的組成體,圓柱的底面直徑等于半球的直徑為2,圓柱的高h(yuǎn)=1,代入圓柱的體積公式和半球的體積公式,即可得到答案.
解答: 解:由已知中的三視圖可得:
該幾何體是由一個(gè)圓柱和半球組成的組成體,
由圖中所示的數(shù)據(jù)可得:
圓柱的底面直徑等于半球的直徑為2,
則半徑R=1,
圓柱的高h(yuǎn)=1,
∴V圓柱=πR2h=π×12×1=π,
V半球=
1
2
×
4
3
πR3=
2
3
×π×13=
2
3
π,
故該幾何體的體積V=π+
2
3
π=
5
3
π.
故答案為:
5
3
π.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由三視圖求體積,其中根據(jù)已知中的三視圖判斷出幾何體的形狀,并判斷出半徑,高等關(guān)鍵幾何量,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+4x+1.
(Ⅰ)求當(dāng)x≤0時(shí),f(x)的表達(dá)式;
(Ⅱ)求滿足不等式f(x2-2)<f(x)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若M={x∈Z|log
1
3
x≥-1
},則集合M的真子集的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
3-2x
-x3+2,解f(
x
4-3x
)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1中,E、F分別為C1D1,B1C1的中點(diǎn),AC∩BD=P,A1C1∩EF=Q,求證:
(1)D、B、F、E四點(diǎn)共面;
(2)若A1C交平面DBFE于R點(diǎn),則P、Q、R三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)據(jù)m1,m2,…,mn的平均數(shù)為10,方差為2,則數(shù)據(jù)3m1+1,3m2+1,…,3mn+1的平均數(shù)是
 
,方差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)F(x)=ax2+2(a-3)x+1在區(qū)間(-1,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F(x)=
x2x>0
1x=0
0x<0
,畫(huà)出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分解因式:x3-3x2+4.

查看答案和解析>>

同步練習(xí)冊(cè)答案