14.若(x+$\frac{1}{x}$)(3x-$\frac{1}{x}$)n的展開式中各項(xiàng)的系數(shù)之和為64.
(Ⅰ)求n的值.
(Ⅱ)求展開式中的常數(shù)項(xiàng).

分析 (Ⅰ)令x=1,則$(x+\frac{1}{x}){(3x-\frac{1}{x})^n}$展開式中各項(xiàng)系數(shù)和為2n+1=64,解出n即可得出.
(Ⅱ)由(Ⅰ)知,$(x+\frac{1}{x}){(3x-\frac{1}{x})^n}$=$(x+\frac{1}{x}){(3x-\frac{1}{x})^5}$,要求展開式的常數(shù)項(xiàng),只需求${(3x-\frac{1}{x})^5}$展開式中含$x和\frac{1}{x}$的項(xiàng),利用通項(xiàng)公式即可得出.

解答 解:(Ⅰ)令x=1,則$(x+\frac{1}{x}){(3x-\frac{1}{x})^n}$展開式中各項(xiàng)系數(shù)和為2n+1=64,
解得:n=5.
(Ⅱ)由(Ⅰ)知,$(x+\frac{1}{x}){(3x-\frac{1}{x})^n}$=$(x+\frac{1}{x}){(3x-\frac{1}{x})^5}$,
要求展開式的常數(shù)項(xiàng),只需求${(3x-\frac{1}{x})^5}$展開式中含$x和\frac{1}{x}$的項(xiàng).
由通項(xiàng)公式得${T_{r+1}}=C_5^r{(3x)^{5-r}}{(-\frac{1}{x})^r}=C_5^r{3^{5-r}}{(-1)^r}{x^{5-2r}}$,
令5-2r=±1,得r=2或r=3.
所以該展開式中的常數(shù)項(xiàng)為$C_5^2{3^3}-C_5^3{3^2}=180$.

點(diǎn)評(píng) 本題主要考查二項(xiàng)展開式等基礎(chǔ)知識(shí),考查運(yùn)算化簡(jiǎn)能力、推理計(jì)算能力、化歸轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.某事業(yè)單位共公開招聘一名職員,從筆試成績(jī)合格的6(編號(hào)分別為1-6)名應(yīng)試者中通過(guò)面試選聘一名.甲、乙、丙、丁四人對(duì)入選者進(jìn)行預(yù)測(cè).甲:不可能是6號(hào);乙:不是4號(hào)就是5號(hào);丙:是1、2、3號(hào)中的一名;。翰豢赡苁1、2、3號(hào).已知四人中只有一人預(yù)測(cè)正確,那么入選者是6號(hào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知x,y滿足不等式$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,且函數(shù)z=2x+y-a的最大值為8,則常數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù),而y=($\frac{1}{2}$)x是指數(shù)函數(shù),所以y=($\frac{1}{2}$)x是增函數(shù)”,導(dǎo)致上面推理錯(cuò)誤的原因是( 。
A.大前提錯(cuò)B.小前提錯(cuò)
C.推理形式錯(cuò)D.大前提和小前提都錯(cuò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如表數(shù)據(jù):
單價(jià)x(元)34567
銷量y(件)7872696863
由表中數(shù)據(jù),求得線性回歸直線方程為$\hat y$=-6x+$\hat a$.若在這些樣本點(diǎn)中任取一點(diǎn),則它在回歸直線左下方的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.把7個(gè)字符1,1,1,A,A,α,β排成一排,要求三個(gè)“1”兩兩不相鄰,且兩個(gè)“A“也不相鄰,則這樣的排法共有(  )
A.12種B.30種C.96種D.144種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.定義:若兩個(gè)二次曲線的離心率相等,則稱這兩個(gè)二次曲線相似.如圖,橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,右頂點(diǎn)為A,以其短軸的兩個(gè)端點(diǎn)B1,B2及其一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是邊長(zhǎng)為6的正三角形,M是C上異于B1,B2的一個(gè)動(dòng)點(diǎn),△MB1B2的重心為G,G點(diǎn)的軌跡記為C1
(Ⅰ)(i)求C的方程;
(ii)求證:C1與C相似;
(Ⅱ)過(guò)B1點(diǎn)任作一直線,自下至上依次與C1、x軸的正半軸、C交于不同的四個(gè)點(diǎn)P,Q,R,S,求$\frac{|{B}_{1}S{|}^{2}-|PR{|}^{2}}{|AQ|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知向量$\overrightarrow{AC},\overrightarrow{AD}$和$\overrightarrow{AB}$在正方形網(wǎng)格中的位置如圖所示,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,則λ-μ=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{5}{2}$D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知復(fù)數(shù)z=k-2i(k∈R)的共軛復(fù)數(shù)$\overline{z}$,且z-($\frac{1}{2}$-i)=$\frac{\overline{z}}{2}$-2i.
(Ⅰ)求k的值;
(Ⅱ)若過(guò)點(diǎn)(0,-2)的直線l的斜率為k,求直線l與曲線y=$\sqrt{x}$以及y軸所圍成的圖形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案