10.若點P(sinθ,cosθ)在直線2x+y=0上,則tan2θ=(  )
A.$-\frac{4}{5}$B.$\frac{4}{3}$C.-$\frac{4}{3}$D.$\frac{4}{5}$

分析 利用任意角的三角函數(shù)的定義求得tanθ的值,再利用二倍角的正切公式求得tan2θ的值.

解答 解:∵點P(sinθ,cosθ)在直線2x+y=0上,∴2sinθ+cosθ=0,
求得tanθ=-$\frac{1}{2}$,則tan2θ=$\frac{2tanθ}{1{-tan}^{2}θ}$=$\frac{-1}{1-\frac{1}{4}}$=-$\frac{4}{3}$,
故選:C.

點評 本題主要考查任意角的三角函數(shù)的定義,二倍角的正切公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.設向量$\overrightarrow{a}$=(4,m),$\overrightarrow$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$-2$\overrightarrow$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=an2+an(n∈N*),則$\sum_{n=1}^{2018}$$\frac{1}{{a}_{n}+1}$的整數(shù)部分是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.“a>b”是“l(fā)na>lnb”的必要不充分條件(從“充分不必要”,“必要不充分”,“充要”和“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(2sin(x+$\frac{π}{6}$),-2),$\overrightarrow$=(2,$\frac{\sqrt{3}}{2}$-2cosx).
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow$,求sin(x+$\frac{4π}{3}$)的值;
(Ⅱ)設f(x)=$\overrightarrow{a}$•$\overrightarrow$,若x∈[0,π],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.角A、B、C為△ABC的三個內角,函數(shù)f(x)=2sin(x-A)cosx+sin(B+C)(x∈R)的圖象關于直線x=$\frac{5π}{12}$對稱,則A=( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若集合A={x|x>$\frac{1}{2}$或x<0},集合B={x|(x+1)(x-2)<0},則A∩B等于( 。
A.{x|$\frac{1}{2}$<x<2}B.{x|-1<x<0或$\frac{1}{2}$<x<2}C.{x|-1<x<$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$或1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在平行四邊形ABCD中,AB=2,∠DAB=$\frac{2}{3}$π,E是BC的中點,$\overrightarrow{AE}•\overrightarrow{BD}$=2,則AD=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知$z=\frac{3i}{1-i}$,則復數(shù)z的虛部為( 。
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.$-\frac{3}{2}i$D.$\frac{3}{2}i$

查看答案和解析>>

同步練習冊答案